
Today

Security vs risk management

Adversarial thinking

Abstraction and its problems

Trust and TCBs

2 / 21

Risk management

Computers not the only risky systems!

reliability

safety

fraud detection

epidemiology

Q: what do these have in common?
3 / 21

A: a couple of things

like security: hidden problems that come to light

unlike security: quantitative analysis

Stochastic threats
Reliability: probability of failure / time between failures
Safety: probability of failures causing safety incident
Epidemiology: probability of infection after exposure

Risk equation:

Q: On what do these
probabilities depend?

R = P × C = T × V × C

4 / 21

We often assume that different risks are independent . This can be quite reasonable in

the case of safety engineering, reliability engineering, etc.. If rust can rust, it will . How

much? As much as it can. If a virus can infect you, it will .

Although, there is one wrinkle in the case of epidemiology: as we've all seen, it's not just about how

the virus will behave, how the population will behave is also pretty

important!

Know your enemy

Classical risk management

an impersonal force of nature

Computer security (and crime, and geopolitics...)

defending against people taking intentional actions

not just a force, an adversary, an attacker

5 / 21

Crime isn't just a matter of means and opportunity: it's also a question of motive (as

well as ethics , morals and social contracts).

The presence of an adversary (or adversaries) is what makes security different from mere risk

management.

Adversarial thinking
The attacker:

a directed, strategic, adaptive adversary

6 / 21

Directed: wants something

Strategic: makes choices and plans to enhance effectiveness

A flood or a virus doesn't choose where or when to strike

Example: lighting and bird strikes

Adaptive: will change attacks as you change defences

Thinking about adversaries

Adversaries vary in their:

Objectives

Capabilities

Methods

Insider access

Support

7 / 21

Objectives: different adversaries want different things! Money, revenge, policy change or just "for

the lulz".

Capabilities: some adversaries are technically very savvy and capable, others are not. Capabilities

can also include non-technical capabilities: an adversary who can break into your house

opens up possibilities that strictly technical adversaries don't have. "Unsophisticated" doesn't mean

" safe ", though!

Methods: not just what they're capable of, but what they like to do and even what they're willing

to do. Different adversaries have different approaches that they take, and some are willing to use

approaches that other's aren't.

Insider access: we'll talk more about this in a moment, but a disguntled insider (or someone who

can find/cultivate one) is actually a very powerful adversary.

Support: some adversaries are on their own, poking at servers in their free time, whereas others are

funded to develop campaigns full-time with teams around them to support their activities.

Defending against one is very different from defending against the other.

Adversary models

Can do some formal modeling

e.g., the Dolev-Yao attacker is very important in network security

Informal shorthands often more immediately useful

8 / 21

Informal adversary models

Accidental Intelligence service

APT Military

Competitor Lookie-loo

Hacktivist Organized crime

Honest-but-curious Scammer

Insider Script kiddie

9 / 21

Accidental Violates security policy without meaning to

APT Well-resourced, operate with impunity

Competitor Industrial espionage

Hacktivist Social or political motivation

Honest-but-curious Executes protocols faithfully but sneaks a peek

Insider Disgruntled employee, whistleblower, etc.

Intelligence service Well-resourced, connected to non-cyber assets

Lookie-loo Motivated by curiosity

Military Connected to physical-world objectives

Organized crime Financial incentive, well-organized markets

Scammer Financial incentive, low effort

Script kiddie Want to see what they can do

Abstraction

What is abstraction?

Why is it helpful?

How is it deceptive?

"Towards a New Model of Abstraction in the Engineering of Software", G Kiczales, IMSA'92: Proceedings of the
1992 Workshop on Reflection and Meta-level Architectures, 1992.
"The Law of Leaky Abstractions", J Spolsky, Joel on Software, 2002.

10 / 21

You've been thinking in a structured way about abstraction since your first programming

course , and informally for long before that! Abstraction is useful; in some ways, it's the core

of what all engineers do.

Abstraction is useful, as it allows us to ignore some aspects of a problem while we

focus on others — we can't think about everything at once ! For example, it

would be much harder to write Python code that translates objects to JSON respresentations if we

had to be concerned with the implementation details of how, say, a hash map is implemented

(what Marsenne prime is being used?), or what the virtual address of an object is, or how that

virtual address is translated to a physical address, or which L2 cache line it's occupying!

On the other hand, abstractions are leaky . A remote method invocation interface may

hide all of the details of network configuration and method enumeration, but if the network goes

down, it can't hide that problem (or at least not well!). Complex systems require thinking

across abstraction boundaries ; if you aren't, you can be sure that your attackers are!

https://embeddedartistry.com/wp-content/uploads/2022/01/Towards-a-New-Model-of-Abstraction-in-Software-Engineering.pdf
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions

Abstraction layers

Common model of a computing system:

attacker can attack the software

attacker can attack the hardware

11 / 21

More abstraction layers!

More realistic model of a
computer system:

attacks can come at any layer

defence must happen at every layer

attacks can be as hidden as
implementation details

12 / 21

The real world is complicated. We have lots of abstractions that go into the making of a computer

system, and all of them leak! None of them fully hide the details of the layers below, and none are

immune from the influence of the layers that sit on top of them. Security is holistic and

systemic .

Critically for security, the attacker often gets to meet you on a field of their choosing . If

one abstraction layer of your system defends effectively against an attacker, they can often come at

layers above or below your work. A bank's smart card can perform a lot of

cryptographic operations to help safeguard your information, but those aren't enough by

themselves. In a lower layer, an adversary can attempt to exploit electrical side-

channel information of the card itself to learn secret information like cryptographic keys. At

a higher layer, if the adversary can gather card details including the CVV2 code via a

skimmer or by fooling the cardholder, all the side-channel security in the world can't protect you.

Thus, your defences are often only as strong as your weakest layer . Example: Bunker

Buster, The Daily WTF

Technical people like engineers often don't like to think about the highest-level abstractions on this

chart, but they are real! The best cryptography and other technical measures can be easily subverted

if you can trick users into misusing systems, or if the economic incentives of a larger sociopolitical

system reward bad behaviour.

https://thedailywtf.com/articles/Bunker_Buster
https://thedailywtf.com/articles/Bunker_Buster
https://thedailywtf.com/articles/Bunker_Buster

Really? Users?

Security is a human discipline

attacker motivations

defender motivations

insider motivations

Office Space (1999)
15 / 21

Insiders can become malicious

https://www.imdb.com/title/tt0151804

Secondary goal

Security is usually a secondary goal. People do not
generally sit down at their computers wanting to
manage their security; rather, they want to send
email, browse web pages, or download software,
and they want security in place to protect them
while they do those things. It is easy for people to put off learning
about security, or to optimistically assume that their security is
working, while they focus on their primary goals. Designers of user
interfaces for security should not assume that users will be motivated
to read manuals or to go looking for security controls that are
designed to be unobtrusive.

““

””Usability of Security: A Case Study, Whitten and Tygar, CMU-CS-98-155
16 / 21

This quote is from Dr Whitten's 1999 PhD thesis (which came out during the same year as Office

Space!).

Don't make users' lives harder than they need to be ! You may turn them into

accidental insider adversaries .

https://www.imdb.com/title/tt0151804/
https://www.imdb.com/title/tt0151804/

Trust and TCBs

What is trust?

"Trusted" vs
"Trustworthy"

17 / 21

Trust is typically a word that brings warm and fuzzy feelings , but not in this course!

Do you trust your bank? Only sort of! You actually trust a combination of your bank

teller, double-entry bookkeeping, security cameras, time vaults, police and security guards, but also

— much more than most people think about — the Canada Deposit Insurance Corporation.

Someone that you might really trust is a venture capitalist . If you meet with a

VC , you will explain your clever idea for a hugely profitable new business

but they will not sign a non-disclosure agreement . You will have no guarantee that they

won't just implement it themselves ... now that is trust. Do you feel warm and

fuzzy about that?

We should build systems that are trustworthy without assuming that they are

trusted .

https://xkcd.com/2166
https://cdic.ca/

One definition of "trusted"

In this view:

Something you have to trust, not want to trust

A trusted system is one whose failure can break the security policy““ ””Anderson, Security Engineering

18 / 21

Or: "one that can get you fired"

Or: "one that you can't really validate"

TCB: Trusted Computing Base

Everything you have to trust

Goal: minimize!

19 / 21

A trusted computing base is everything in a system that you are trusting, i.e., everything you are

depending on in order for your part of a system to work correctly.

Attacks against different layers have different costs and different levels of applicability. A supply-

chain attack against a common Node.js package can be as cheap as a domain name and

as easy as a modified package.json , introducing vulnerabilities into tens of thousands of

other packages. A supply-chain attack against a motherboard, however (also described here) takes a

lot more work, both to implement and then to exploit. However, it is also much more difficult to

defend against!

Our goal, then, is not to maximize TCBs but to minimize them . The less we

have to depend on, the better.

https://twitter.com/vxunderground/status/1523982714172547073
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/features/2021-supermicro/

Today

Abstraction and its problems

Trust and TCBs

Next time:

Software security

20 / 21

