
Last timeLast time
Classical cryptography Classical cryptography ⇒⇒ one-time pad one-time pad

Block ciphersBlock ciphers

Block cipher modes and MACsBlock cipher modes and MACs

Today: cryptographic hash functionsToday: cryptographic hash functions

2 / 14

MAC RequirementsMAC Requirements
1. Arbitrary-length message

2. Small, fixed MAC length

3. Computationally e!icent

4. Collision resistance:

can't generate another message with the same MAC

can't generate another message with any valid MAC

3 / 14

Note: the Sealed Authenticator System (SAS) codes on a nuclear-armed submarine probably
don't use keyed MACs, but rather purely-random codes that no human eyes have ever seen.
Source: Waller, "Practicing for Doomsday", Time Magazine, 4 Mar 2001.

http://content.time.com/time/magazine/article/0,9171,101361-3,00.html

MAC generalizationMAC generalization
What if we don't need a block cipher?What if we don't need a block cipher?

What if we don't want to use a key?What if we don't want to use a key?

4 / 14

But why wouldn't we want to use a key?

AAA[A]AAA[A]
CategoryCategory QuestionQuestion

AuthenticationAuthentication Is something/someone authentic (is it really you)?

AuthorizationAuthorization Are you allowed to do that?

AccountingAccounting Who has used which resources?

AuditAudit Who did what to what?

MessageMessage authentication vs authentication vs principalprincipal authentication authentication

5 / 14

Examples of message authentication include the authenticated orders in Crimson
Tide and the payment authorization messages describde by the EMV protocol. In both of these
cases, there are secrets required besides the message itself.

When authenticating someone instead of something , we can use messages
in which the message itself is the secret, for example...

https://www.emvco.com/

PasswordsPasswords
Old and terrible, but...Old and terrible, but...

Dictionary attackDictionary attack

online

o!line – ???

6 / 14

We'll talk later in the term about protocols that we can use for authentication based on a third
party, but at some point, somebody has to store a password

A dictionary attack is a brute-force attack: instead of trying every possible key for a cipher, you
try every possible password from a dictionary. This is generally cleverer than trying "aaaaaa",
"aaaaab", etc., as some passwords are (unfortunately) likelier to be chosen than others. Also,
the dictionary may include more than just "dictionary" words!

Threats to authenticationThreats to authentication
External threatsExternal threats

password guessing

MAC-based challenge/response guessing — human-computable?

Internal threatsInternal threats

password database could be stolen

... but so could a secret key for validating MACs!

7 / 14

MAC-based schemes only work when the secret key is actually secret . We can't
guarantee that in general-purpose computers.

We'll talk later about public-key schemes that can help with the theft issue, but they don't help
with the human-computability problem.

Cryptographic hash functionsCryptographic hash functions
Remember hash tables' hash functions?Remember hash tables' hash functions?

variable-length input

fixed-length output

Cryptographic hash functionsCryptographic hash functions

MD4, MD5, SHA-1, RIPEMD-160, Whirlpool, SHA-2 (SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, SHA-512/256), SHA-3, BLAKE2/3...

8 / 14

These properties sound like some of the properties of MACs: variable-length input, fixed-
length output, computationally efficient and avoiding collisions. However, while regular hash
functions try to avoid collisions, they do happen, because the consequences of a collision aren't
terribly serious. If we start to see lots of collisions in a hash table, we can always increase the
size of the table.

Cryptographic hash functions, however, are something entirely different. A cryptographic hash
function should still be fairly efficient to compute (in practice, we can hash millions of MB/s),
but efficiency has to be traded off for much stronger collision resistance . Once we
start sending messages around with cryptographic hashes, we can't recall all of the messages
and re-hash them. Instead, we must be very strict about collisions up front.

Cryptographic hash functionCryptographic hash function
Di!usion:Di!usion: small changes small changes ⇒⇒ large e!ects large e!ects

All values should be equally likelyAll values should be equally likely

Should resist:Should resist:

Collision attack: find s.t.
Preimage attack: given , find s.t.
2nd preimage attack: given , find s.t.

,X1 X2 h() = h()X1 X2

h()X1 X2 h() = h()X1 X2

X1 ≠X2 X1 h() = h()X1 X2

9 / 14

Collision attack

Finding any two messages that hash to the same value. When we get to digital
signatures, we'll see that collision attacks can be quite important: if you can generate two
messages with different meanings but the same hash, you can cause a lot of trouble! However,
such attacks aren't so useful for password security.

Even with the strongest hash function, collisions are easier to find than you might
think due to the birthday paradox. However, "easier" doesn't have to be "easy": if the hash
output is large, you can still have a lot of work to do! can still be a large number if is
big enough...

Preimage attack

Finding an input that hashes to the same value as a given hash. This could be the same input
that was originally used to generate the hash or a different one.

Second preimage attack

Finding a different input that will hash to the same value as a given input. This is
like a collision attack, but much harder: instead of generating lots of messages and finding two
that hash to the same value, you have to find one that hashes to the same value as a

2n−−√ n

https://en.wikipedia.org/wiki/Birthday_problem

Password hashingPassword hashing
What does this have to do with passwords?What does this have to do with passwords?

Resisting Resisting o!lineo!line dictionary attacks* dictionary attacks*

RainbowsRainbows†† and salt and salt

Iterative password hashing (KDFs)Iterative password hashing (KDFs)

* see, e.g., John the Ripper
† Oeschslin, "Making a Faster Cryptanalytic Time-Memory Trade-O!", CRYPTO 2003: Advances in Cryptology -
CRYPTO 2003, 2003. DOI: 10.1007/978-3-540-45146-4_36.

11 / 14

We don't need any cryptography to resist an online dictionary attack. Protecting password
databases is, instead, all about resisting offline attack , where an adversary has
gained access to a password database and they want to get passwords from it. Without any
cryptography, they can simply do a database lookup. With cryptography, however, we can
make things much harder for them.

As a (very bad!) alternative to password hashing, check out this analysis of a major password
database breach at Adobe.

Tools like GPUs are really good at parallel computation. Attackers can use them to try lots and
lots of passwords concurrently to see if they can find the correct one (a bit like the Bombes in
Bletchley Park!). Key Derivation Functions (KDFs) make life harder for an attacker
by forcing computation to be serial . There is a cost for the user, too, but it's
insignificant compared to the benefit of not having your password cracked when a business
suffers a data breach!

https://www.openwall.com/john/
https://dx.doi.org/10.1007/978-3-540-45146-4_36
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder

What makes a good password?What makes a good password?
(we'll answer this next time)(we'll answer this next time)

12 / 14

MAC generalizationMAC generalization
What if we don't want to use a key?What if we don't want to use a key?

What if we don't use a block cipher?What if we don't use a block cipher?

HMAC: hash-based message authentication code*HMAC: hash-based message authentication code*

* Bellare, Canetti and Krawczyk, "Keying Hash Functions for Message Authentication", CRYPTO 1996, 1996.
Standardized by NIST (FIPS 198-1) and the IETF (RFC 2104).

h ((k ⊕)||h((k ⊕)||text))po pi

13 / 14

An HMAC uses a hash function with a key. This provides the same security properties as a
block-cipher–based MAC, just with a different underlying cryptographic algorithm. HMACs
are pretty popular in circumstances where you'd be doing a bunch of hashing anyway (e.g.,
Transport Layer Security cipher suites, which we'll talk about later).

https://link.springer.com/chapter/10.1007/3-540-68697-5_1
https://csrc.nist.gov/publications/detail/fips/198/1/final
https://datatracker.ietf.org/doc/html/rfc2104

