Recall
Classical cryptography

One-time pad
Block ciphers

Cipher modes and MACs

2/18




Symmetric-key cryptography

Can demonstrate semantic security for:

e One-time pad (perfectly secure iff key symbols unpredictable)
e Block ciphers (with appropriate modes)

e Stream ciphers (inspired by one-time pad)
but... how to share the key?

* key exchange problem meant crypto only really for global orgs

Up until the 1970s, in order to really make use of cryptography, you needed to have a
mechanism to reliably and confidentially distribute keying material to all of the places it might
be used. This kept the tool of full-strength cryptography out of the hands of all but large and
powerful organizations with global networks, i.e., governments and some multi-national

corporations. And, of course, multinationals don't have diplomatic pouches!




Diffie and Hellman*

How to solve key exchange problem?

Focused on discrete logarithm problem:

Y =of (mod gq)
X =log,Y (mod q)

"Normal" logarithms are easy... discretelog (mod gq) tougher!
Example of mathematical one-way function

* Diffie and Hellman, "New directions in cryptography", IEEE Transactions on Information Theory 22(6), 1976.

DOI: 10.1109/TIT.1976.1055638
4/18

Solving this problem could make cryptography much more useful, both for "ordinary" people
and for traditional users of cryptography who wouldn't have to expend so much effort or limit
its use quite so much.

A one-way function is one that is relatively easy to compute in one direction (in this case,
raising a value to an exponent in a finite field) and extraordinarily difficult to compute in the
other direction (in this case, finding the logarithm of aX ). How can we use these kinds of one-

way functions for cryptographic ends?



https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-5906-5_467
https://doi.org/10.1109/TIT.1976.1055638
https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-5906-5_467

Diffie-Hellman operations

1. Raise a to random numbers X 4, Xg (mod q):

Yy =0ao% (mod q)
Yz = o*®  (mod q)

2. Raiseresultsto X 4, Xp (mod q):

X4 X3

Y4**  mod g = (o mod q)XB mod ¢ =« mod ¢

YzX4 mod g= (aXB mod q) *4 mod g =a*4%8  mod ¢

5/18

Diffie and Hellman proposed a cryptographic scheme in which two subjects — conventionally
referred to as and — would exchange messages

, .., assuming that




Diffie-Hellman key exchange

XaXp

Y X mod g=a mod ¢

X4X8 mod ¢

Yz¥ mod g=a
So what?
o Whatif 4% mod qwerecalled... K457

e Exchange of @™ and a* in the clear establishes a key

¢ Aslong as the discrete log problem is "hard", the established key
can be used for symmetric-key cryptography (with one caveat)

In the brave new world of quantum computers, an algorithm called

can be used to efficiently compute discrete logarithms. So, straightforward Diffie-Hellman key
exchange as originally proposed won't work forever — we need another hard mathematical

problem. However, there are lots of out there, some of which are

more amenable than others to an environment where the adversary possesses quantum
computers. Whether or not we use discrete log as our one-way function, the idea of Diffie-
Hellman key exchange is still useful. That's why it turns up all over the place, e.g., ECDH in a
TLS cipher suite.




Significance
Created a new era of public-key cryptography

¢ well, at least as far we anyone knew at the time*
e a.k.a., asymmetric-key cryptography

e first possiblity of cryptography for everyone

* P. Wayner, "British Document Outlines Early Encryption Discovery", The New York Times, 24 Dec 1997.

This is an example of a funny thing that often happens: pure mathematicians play around with
number theory and find a result that is elegant, pure and also completely useless in practical
terms. That result then sits on the shelf for years and years until someone discovers a way to

to a new problem that had nothing to do with the original

mathematicians' objectives (which was do discover something elegant). This kind of
progression (pure research leads to applied research which leads to practical products) happens

all the time, leading to , and

it if you only look for things you can already think of. That's why the
"little R, big D" style of R&D doesn't offer much of a future by itself.

Diffie and Hellman were, unbeknownst by them, beaten to the punch by six years by
cryptographers working for the UK government. C.E.S.G. Report No. 3006 was declassified by
GCHQ in 1997, but annoyingly, the report doesn't include any declassification markings: it still
looks like a classified document! So, depending on where you work, don't print this out and
leave it lying around. (&)



https://archive.nytimes.com/www.nytimes.com/library/cyber/week/122497encrypt.html
https://web.archive.org/web/20170216051636/https://www.gchq.gov.uk/sites/default/files/document_files/CESG_Research_Report_No_3006_0.pdf

Diffie-Hellman today

[ | tls and ip.addr==134.153.30.17

Foundation of TLS

3451 27.537041
‘ 3455 27.537271
3458 27.538679
3462 27.538870

e Used to establish symmetric
keys between parties

Source

134.153.232.92
134.153.232.92
134.153.232.92
134.153.232.92

Destination

134.153.30.17
134.153.30.17
134.153.30.17
134.153.30.17

Protocol
TLSV1..
TLSv1..
TLSv1..
TLSv1..

Frame 3451: 1514 bytes on wire (12112 bits), 1514 bytes captured (121
Ethernet II, Src: 7c:ad:4f:9e:f9:bf (7c:ad:4f:9e:f9:bf), Dst: Luxshar
Internet Protocol Version 4, Src: 134.153.232.92, Dst: 134.153.30.17

Transmission Control Protocol, Src Port: 443, Dst Port: 61311, Seq: 1
Transport Layer Security

v TLSv1.2 Record er: Handshake Protocol: Server Hello

e Inspiration for later ECDHE Content Type:

Handshake (22)

Version: TLS 1.2 (0x0303)

(Will disCuss in a feW S“des) :::gz:;k:lProtocol: Server Hello

Handshake Type: Server Hello (2)

Length: 57

Version: TLS 1.2 (0x0303)
Random: 60d9de675284dc18bafa55f

More TLS later session 1
eoee Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xco2f)

Compression Method: null (@)

Extensions
Extension:
Extension:
Extension:

Length: @

Length: 17

1,

renegotiation_info (len=1)
ec_point_formats (len=4)

session_ticket (len=0)

34ffld..

8/18

Demo:




(1 ip.addr==134.153.24.18

No.

573
573

442..
442..
442...
442..
442...
442..
442..
442...
442..
442..
442..
442..
442...

Time
7 44.045274
8 44.045275

294.345097
294.347259
294.347776
294.349070
294.349103
294.349211
294.349212
294.349245
294.349654
294.351001
294.351043
294.574258
294.574603

Source

142.162.133.201
142.162.133.201

134.153.30.17
134.153.30.17
134.153.24.18
134.153.24.18
134.153.30.17
134.153.24.18
134.153.24.18
134.153.30.17
134.153.30.17
134.153.24.18
134.153.30.17
134.153.30.17
134.153.30.17

Destination

134.153.24.18
134.153.24.18

134.153.24.18
134.153.24.18
134.153.30.17
134.153.30.17
134.153.24.18
134.153.30.17
134.153.30.17
134.153.24.18
134.153.24.18
134.153.30.17
134.153.24.18
134.153.24.18
134.153.24.18

Protocol Lengtt
TCP 78
TCP 78
TCP 66
TLSv1.. 583
TCP 66
TLSv1.. 1514
TCP 66
TCP 1514
TCP 1266
TCP 66
TCP 66
TLSv1.. 1102
TCP 66
TLSv1.. 130

466

TLSv1..

Info
49175 - 80 [SYN] Seq=0
49174 - 80 [SYN] Seq=0

61381 - 443 [ACK] Seq=I
Client Hello

443 - 61381 [ACK] Seg=!
Server Hello, Change Ci
61381 -» 443 [ACK] Seq=f
443 - 61381 [ACK] Seq=I
443 - 61381 [PSH, ACK]
61381 - 443 [ACK] Seq=f
[TCP Window Updatel 61:
Application Data, Appli
61381 - 443 [ACK] Seq=:
Change Cipher Spec, Apr
Application Data

Random: c744e20093bcce2b957ael5f77c72bbf34f477c2f56d8cb4...

Content Type: Handshake (22)
Version: TLS 1.0 (0x0301)

Length: 512

Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)

Length: 508

Version: TLS 1.2 (0x0303)

Session ID Length: 32
Session ID: 21654747da96648f249e7fde551c47063a2ea5675cc95509..

ILSVL.3 RECOra Layer: nanasnake FrotocoL: Lillent nAeLLo

Cinher Suitec |l ennth: 3A
0040 e0 30 16 03 01 02 00 01 00 01 fc @3 03 c7 44 e2 Qe s D:
0050 00 93 bc ce 2b 95 7a el 5f 77 c7 2b bf 34 f4 77 sz Wedrdew
0060 c2 f5 6d 8c b4 f8 68 f1 9b 50 dc dd 5e 20 21 65 m::-h: :P:-:~ le
0070 47 47 da 96 64 8f 24 9e 7f de 55 1c 47 06 3a 2e GG::d-$- U-G-:.
0080 a5 67 5c c9 55 09 01 69 5a f5 45 21 fe 5c 00 24 ‘g\:U--i Z-E!:\:$
0090 13 01 13 03 13 02 c0 2b c@ 2f cc a9 cc a8 c@ 2c¢ - + e ,
00ab c@ 30 cO Pa cO 09 cO 13 cO 14 00 9c 00 9d 00 2f c@ocoooe scooooc /
00bo @0 35 00 0a 01 00 01 8f 00 00 00 14 00 12 00 00 B O IR
0oco @f 77 77 77 2e 65 6e 67 72 2e 6d 75 6e 2e 63 61 *WwW.€eng r.mun.ca

We'll talk more about TLS and its importance when we get to the

portion of the course next week.




RSA cryptosystem

1. Choose large primes p and g, computen = p - g
2. Choose b, computea froma-b mod ¢(n) =1
o ¢p(n) = (p — 1)(q — 1) is the Euler totient function

o b should be co-prime with ¢(n); compute a using
extended Euclidean algorithm

3. Publickey Kp = {b,n}, secret key Kg = {a,p, q}

Rivest, Shamir, Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems",
Communications of the ACM. 21 (2): 120-126, 1978. DOI: 10.1145/359340.359342.

Although Diffie-Hellman came first, the most famous public-key cryptographic algorithm is
RSA. Unlike Diffie-Hellman key agreement, which just lays the groundwork for subsequent
use of a symmetric-key cipher, RSA really is an encryption algorithm all by itself.



https://doi.org/10.1145%2F359340.359342

RSA encryption/decryption
Given large (e.g., 2048b) plaintext P:

C=P" modn

P=C* (mod n)
= (P*)* (mod n)
= P%  (mod n)
= pF¢M+l (mod n)
= P (mod n) if P co-prime to n

10/18

This is an example of a , which adds an additional layer on top of

a one-way function. Like a one-way function, a function should be easy to

compute in one direction and hard in the other. What's new here is that some
(in this case, the value a) can make even the hard direction easy. Whoever

possesses the can encrypt or decrypt, whereas you can only encrypt

without it.




Significance of RSA encryption
Uses asymmetric key pair

e Can encrypt using public key

e Decryption requires knowledge of private/secret key

Much slower than symmetric-key encryption!

e Can be used to encrypt a symmetric key for bulk crypto

11/18




Security of RSA

Givenb,nand C = P® mod n,find P

Difficult to invert exponentiation
e Easy if we know a

¢ Easy if we known p or g (which we can use to find a)

Difficult to factor n

e ... atleast until quantum computing becomes "real"!

12/18

Difficult to invert exponentiation

We already know that the discrete log problem is hard: we can't just find the logarithm of
P® mod n.If you find a way to do that easily, you will break both Diffie-Hellman key
exchange and RSA encryption. And become very famous... or very rich!

Finding a multiplicative inverse in real numbers is easy: ifab = 1, a = % However, in a
finite, field, finding the inverse of ab mod n is not so easy! In fact, it's another known "hard

problem" in mathematics and computing.

Difficult to factor n

If we could factor 1 into p and g, we could find a in the same way that the private key owner
did when they generated it. However, factoring large almost-prime numbers is another known
hard problem. Well, at least with conventional computers...

This is one instance in which some of the hype around quantum computing is justified. If
people ever manage to build a quantum computer large enough and powerful enough, Shor's
algorithm provides a method of factoring large integers in bounded-error quantum polynomial
time (BQP). So, will that "break all cryptography"?

quantum-resistant algorithms:

e algorithm standardization

e practical experimentation



https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/BQP
https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://en.wikipedia.org/wiki/CECPQ2

RSA factoring
RSA Factoring Challenge

e Historic contest funded by RSA Security, Inc.
¢ Now defunct, people still attacking challenges
Current recommendations

e 2048b RSA keys until... 20307

¢ Beyond that... not RSA-2048!

Bits Factored

330 1991
426 1994
512 1999
640 2005
768 2009
795 2019
829 2020

Once we get beyond 2048b RSA keys, we're not going to keep using larger and larger RSA

moduli. As these numbers get bigger and bigger, it becomes more and more expensive to

perform even legitimate RSA operations. Instead, the world is already moving away from RSA

and towards...




Elliptic-curve cryptography
e Curve over finite field that satisfies:
y2 — 2173 + azx + b /\\/
¢ Relies on point addition (and many L
additions makes for multiplication) /\

e Can represent keys with hundreds of bits
instead of thousands

e ECDH, ECES, ECDSA...

14/18

Again, this is all in a , not general (real) numbers. Here, we can replace

the standard discrete log problem with the and

re-constitute the same sorts of public-key cryptographic algorithm that we've built with the
regular discrete log.

One major advantage of ECC is that we can use smaller keys (hundreds of bits providing
equivalent security to thousands of bits for RSA) and do less computational work.

Using elliptic curves, we can do key negotation (Elliptic Curve Diffie-Hellman), encryption
(Elliptic Curve Encryption Standard) and other things (e.g., the Elliptic Curve Digital Signature
Algorithm).




How about the reverse?
We know that:

e ¢ = Ep(p) requires knowledge of a public key

e p = Dg(c) requires knowledge of a private key

What about:
e s = Dg(m),m?

e Anyone can check thatm = Ep(s)!

If we have public-key cryptographic algorithms that are easy in one direction and hard in the
other direction, could we reverse them so that the opposite is true?

Yes! We can apply the "decryption" operation (using the private key) in order to produce a
message.

If we do this, the message will be such that anyone can check it using the public key. If it

checks out, this must mean that

This is a bit like a Message Authentication Code, but now we don't need to have access to a
secret key in order to verify the message, !




Digital signatures

Like encrypting large plaintexts, too slow to be practical

Instead, "decrypt" a cryptographic hash of a message

Used for:

Signing documents (a bit)

Digitally signed by Jonathan Anderson
Reason: | am approving this document
Date: 2021.06.16 08:02:42 -02'30"

Rt Hopoe

Signing server certificates (later)

Signing code (next time)

16/18

When we use public-key cryptography to produce such a verification token, we call it a

We never digitally sign a message directly. Instead, we compute the hash of a message (which
computes a fixed-length value from an arbitrary-length message), then produce a digital
signature of that hash value. Now we can understand all of the elements of a 7LS Cipher Suite,
e.g.

[l [tls and ip.addr==134.153.30.17

No. Time Source Destination Protocol
‘ 3451 27.537041 134.153.232.92 134.153.30.17 TLSv1..
3455 27.537271 134.153.232.92 134.153.30.17 TLSv1..
3458 27.538679 134.153.232.92 134.153.30.17 TLSv1..
3462 27.538870 134.153.232.92 134.153.30.17 TLSv1..

Frame 3451: 1514 bytes on wire (12112 bits), 1514 bytes captured (121
Ethernet II, Src: 7c:ad:4f:9e:f9:bf (7c:ad:4f:9e:f9:bf), Dst: Luxshar
Internet Protocol Version 4, Src: 134.153.232.92, Dst: 134.153.30.17
Transmission Control Protocol, Src Port: 443, Dst Port: 61311, Seq: 1
Transport Layer Security

v TLSv1.2 Record Layer: Handshake Protocol: Server Hello

Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 61
Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 57
Version: TLS 1.2 (0x0303)
Random: 60d9de675284dc18bafa55f8d465e03311f3603d56534ff1d..
Session ID Length: @
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc@2f)
Compression Method: null (0)
Extensions Length: 17
Extension: renegotiation_info (len=1)
Extension: ec_point_formats (len=4)
Extension: session_ticket (len=0)

o ECDHE (Elliptic Curve Diffie-Hellman Exchange) for key negotation




e RSA for digital signature of server information
o AES-128 in GCM (Galois Counter Mode) for encryption

e SHA-256 for message hashing




Diffie-Hellman
RSA
Elliptic curves

Digital signatures

Summary

7/18




