
TodayToday
Code signingCode signing

interpreted code

native code

PlatformsPlatforms

2 / 27

Software installationSoftware installation
In days of yore:In days of yore:

build the code

setup programs

Coherence:Coherence:

installer frameworks

package managers

6 / 27

Once upon a time (or still today in some Unix environments!) the way to install code was to
run make install — or worse, make followed by coping files into place.

Things evolved a bit with setup programs that could, well, set up a program. These
programs typically ran (at least on PCs) in the days before Biba policy application, so they
could generally put whatever they wanted wherever they wanted .

Eventually, this led to the creation of coherent abstractions for software installation. In
Windows-land, Microsoft pulled the rug out from underneath InstallShield by creating the
Windows Installer framework, which allowed applications to specify what files they needed to
install, registry keys the needed to update, etc., without having to resort to arbitrary code
execution at install time. Clean abstractions lead to nice outcomes like idempotency, coherent
transactions and rollback/uninstallation, etc. (though you can still run arbitrary code via
hilarious workarounds).

In the open-source world, the abstraction of a "package" was typically managed by a package
manager, which would also add the benefit of dependency management and automatic fetching
and installation of dependencies (after all, you only want to run freely-available open source
software, right?). Packages could contain arbitrary setup scripts to, e.g., set up new users and
groups, but over time we're moving towards having package managers handle these things too
so that there doesn't need to be any arbitrary code execution . Hooray!

https://stackoverflow.com/questions/98778/executing-a-script-file-from-a-windows-installer-custom-action

Software installation todaySoftware installation today
$ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
$ curl -sSL https://get.rvm.io | bash
$ curl -L https://omnitruck.chef.io/install.sh | sudo bash

What are the risks?What are the risks?

running with user privilege?

running with system privilege?

7 / 27

Having learned all of these lessons (reduce arbitrary code execution as much as possible, use
abstractions that can be rolled up into reversible transactions, etc.), we've proceeded to throw
them all away over the last decade or so.

Installation scripts that run with user privilege can do anything that your user account
can do . "But I can inspect the script and make sure it doesn't do anything malicious," you
say... sure, but do you?

Installation scripts that run with superuser privilege can do anything that the superuser
can do. That sounds pretty scary! However, package managers can also run
arbitrary scripts as root ... so what's the critial difference?

Recall: integrityRecall: integrity
Where did that high-integrity so!ware come from?Where did that high-integrity so!ware come from?

Where do your so!ware updates come from?Where do your so!ware updates come from?

Can we check these things Can we check these things a!era!er download? download?

8 / 27

You might think you're getting Windows updates from update.microsoft.com, but how do you
know? We'll see in the Network Security module that it isn't actually all that hard to spoof
domain names on many networks (including Memorial's!), so what are you trusting
when you install a Windows update? What is your TCB ?

Is there anything that we can do to authenticate software updates after we download them in
order to keep the whole network stack out of our TCB ?

RecallRecall
Message authentication codesMessage authentication codes

Allow us to verify things... but what's the problem?

Digital signaturesDigital signatures

S = {h(M)}DKS

V = {S} h()EKP
=? M ′

9 / 27

We can use a MAC to validate the integrity of a message, but only if both parties know
the symmetric key . That's not a great fit for such an asymmetric use case as
software updates, where one vendor may send updates to millions (or billions!) of end users.

How about digital signatures? A vendor can create a signature over a message (e.g., a software
package) and ship that along with the software itself.

Then, anyone who has the vendor's public key can verify that the package was actually sent my
that vendor. However, how can I reliably acquire the public key of every software
vendor that I interact with ? Moreover, what happens if the vendor ever loses
their private key ? Do they have to expect perfection of their code signing
system/team?

Code signingCode signing
Chain of TrustChain of Trust
I sign my code with my key
Certificate authority signs that*
A root CA is ultimately trustedtrusted

Common instantiation: X.509Common instantiation: X.509

standard for representing
who has signed what

aside: ASN.1 BER originally a telco standard, easy to get wrong

Owner's name

Owner's public key

Issuer's (CA's)
name

Issuer's signature

End-entity Certificate

Root CA's name

Root CA's public key

Root CA's signature

Root Certificate

sign

sign

self-sign

reference

reference

Owner's (CA's) name

Owner's public key

Issuer's (root CA's)
name

Issuer's signature

Intermediate Certificate

Source: Wikimedia Commons

10 / 27

Rather than distributing every vendor's public key reliably, we can distribute a (comparatively)
small number of high-value root CA keys. Their corresponding private keys need to be
protected, which is part of why we have a chain of trust: the CA only rarely takes their
root key out for use . Instead, they sign an intermediate key with the root key
and then use the intermediate key for actual signing .

ASN.1 is a classic example of an overcomplicated standard make what ought to be simple
extraordinarily complex and error-prone. It features more than one set of binary encoding rules,
and getting those serialization and deserialization rules right has led to a shocking number of
security vulnerabilities. It shouldn't be this hard, but it is.

https://commons.wikimedia.org/wiki/File:Chain_of_trust.svg
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=asn.1

Code signing certificatesCode signing certificates
Hype vs factHype vs fact

11 / 27

Code signing is useful, but like anything to do with security (or computing, or life really), don't
believe the hype!

Purpose of code signingPurpose of code signing
Goal: verify Goal: verify identityidentity of code of code

Note: not verifying Note: not verifying goodnessgoodness of code of code

This OS update was released by Microso!, and I'm choosing to trust
Microso!, so I will choose to trust this OS update“

”
This code was signed by Microso!, so it doesn't have any bugs“ ”

12 / 27

This skeptical attitude towards verification is useful across all of computer security (and, again,
across all of life!).

"My bank called and said that..."
Someone who claimed to be from my bank called and said that...

"This code is signed, so it must be trustworthy."
This code is signed, so we can attribute its origin to a vendor (or, even better/worse, we can
attribute its signature to a root CA who we trust to have been following the right
procedures).

"We can trust this shipping manifest because it's on the blockchain."
This possibly-fraudulent manifest was published before some other stuff was published.
Probably.

Code verificationCode verification
When?When?

installation time

run time

How?How?

13 / 27

We can verify digital signatures on code at install time or at run time. The details of the
techniques will differ slightly, but what's really interesting is what policies these two

mechanism provide support for.

JavaJava
SecureClassLoader

loads code like any
ClassLoader

adds CodeSource and
getPermissions

Code signing tied to privilegesCode signing tied to privileges
(no confused deputy)

14 / 27

Signed JAR files can be loaded and associated with permissions that other code loaded at run
time wouldn't have. For example, if I write a Java program that provides run-time plugin
support, I can write a SecureClassLoader that will give my own plugins (or plugins that
I've signed through my online store) permission to access the filesystem, but unsigned plugins
may not be able to perform any such operations.

Java provides support for tracking these privileges up and down the call stack, so that the Java
runtime can tell whether code is being invoked on behalf of only privileged code. This avoids
the confused deputy problem, in which privileged code is tricked into executing a privileged
operation on behalf of malicious and unprivileged code (for example, a malicious plugin
calling a legitimate method that saves data into a configuration file, allowing malicious data to
be written there).

https://www.ibm.com/docs/en/was-nd/8.5.5?topic=security-access-control-exception-java

Native code signingNative code signing
That's nice for Java...That's nice for Java...

... but how about native code?... but how about native code?

The processor doesn't verify signatures... who does?The processor doesn't verify signatures... who does?

15 / 27

This works really well for bytecode-interpreted languages, where the language runtime is able
to interpose itself in the execution of a program.

When executing native code, however, there is no monitor checking every instruction that gets
executed. The only thing outside of the binary code which sees the instructions is the processor
itself, and it ain't checking digital signatures when you invoke a function!

Signed native codeSigned native code
Installation time: Installation time: installerinstaller

Module load time: Module load time: kernel loaderkernel loader

Ordinary applications: Ordinary applications: kernelkernel

Bootstrapping: a bunch of places!Bootstrapping: a bunch of places!

16 / 27

Installers can check signatures and require that packages have been signed by someone with a
trusted public key. That does, however, lead to funny advice sometimes, e.g.:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg \
 | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

WindowsWindows
Device driversDevice drivers

Windows updateWindows update

SmartScreen and EV certificatesSmartScreen and EV certificates

Installers and UACInstallers and UAC

17 / 27

The Windows Quality Hardware Labs (WQHL) initiative didn't so much start as a security
initiative as a "stop blaming us" initiative. Hardware vendors aren't always good at software,
and buggy device drivers have caused a lot of Blue Screens of Death over the years. Microsoft
created the WQHL program to ensure that, if a driver was to be loaded by the Windows kernel,
that it would have passed some quality assurance tests first (some of which were actually pretty
cool, e.g., proving termination of interrupt handling routines).

macOSmacOS
Not just for drivers!Not just for drivers!

macOS vs iOSmacOS vs iOS

18 / 27

A key distinction between macOS and iOS (at least for now) is that you can turn
mandatory verification off in macOS . The mechanism exists in both, but the policy is
different. However, who knows if that freedom to install whatever you want will
remain ...

Unix-ey systemsUnix-ey systems
Package managersPackage managers

Merkle treesMerkle trees

19 / 27

Signing only the root of a package tree is a nice example of a Merkle DAG (which is also a key
technology used in other places, e.g., copy-and-write filesystems and blockchains). If you sign
a hash of a bunch of hashes of a bunch of hashes, you can effectively sign an enormous
tree of content with a single signature!

Merkle treesMerkle trees
CommittmentCommittment

LayersLayers

Merkle, R. C., "A Digital Signature Based on a Conventional Encryption Function", Advances in Cryptology —
CRYPTO '87, 1987. DOI: 10.1007/3-540-48184-2_32.

21 / 27

A cryptographic hash can be used to express a committment: without revealing any data now, I
can promise you what data I will reveal in the future. When I reveal the data, you can check
that it matches the committment using the hash that I already gave you. If I change even a
single bit in the data, it will alter the hash in dramatic ways.

A hash of data allows us to commit to that data. A hash of a bunch of hashes of data allows us
to commit to all of the data. We can add more layers arbitrarily to this tree, allowing a single
hash to speak for arbitrary amounts of data.

https://doi.org/10.1007/3-540-48184-2_32

Merkle DAGsMerkle DAGs

22 / 27

Technically, a Merkle tree can actually be a more general DAG. This is because various pieces
of data within the DAG can actually reference each other, but never with cycles: the only way
to generate a hash is to have in its entirety, so can't include a hash that refers back
to .

h(X) X X

h(h(X))

Aside: blockchainAside: blockchain
HashesHashes

Merkle treesMerkle trees

BlocksBlocks

PermissionsPermissions

23 / 27

Hash functions are now old hat to us. Nothing new here.

Using Merkle trees, each block in the blockchain can refer to an arbitrary amount of data. This
could represent shipping manifests, quasi-financial transactions or anything else you might care
to think of.

The new thing about a blockchain is that it has blocks which represent a
canonical serialization of data added to the chain. This serialization

doesn't depend on timestamps per se, it depends on the logical happens-before
relationship that's indicated by a hash function: in order to hash the previous block, it must
have been available to you before you created your hash (which went into the new
block).

The tricky thing about anything "canonical" is deciding how that canon is determined /
recognized . People can get surprisingly detailed about these questions when discussing
things like comic books. If we're going to establish a canonical serialization of all the
transactions that have occurred in our new crypto-nerd utopia, who gets to decide whether my
preferred transaction ordering is correct or yours is?

In a permissioned blockchain, we can express authority to say "this happened next" via
cryptographic mechnisms like digital signatures. Every client can check, "was this signed using
a public key whose certificate was signed by an appropriate authority?" In an unpermissioned
blockchain, we need some other way to determine who gets to say what comes next. Public
blockchains like Bitcoin and Ethereum (at least for now) use a proof-of-work

https://www.quora.com/What-defines-a-comic-as-canon-or-non-canon-Marvel-and-DC

scheme in which whoever can solve a cryptographic puzzle: find such that starts
with at least zeroes. As increases, this requires an obscene amount of energy for
computation, so much so that some people want to use all of Muskrat falls to make a small dent
in the global demand. Etherium might ever switch to a proof-of-stake scheme in
which all of the most well-moneyed interests get to say what's what... and that's better than fiat
currency how? (/end skeptical rant)

x h(prev, x)
n n

https://www.nature.com/articles/s41467-021-22256-3
https://www.saltwire.com/atlantic-canada/news/labrador-blockchain-company-wants-all-the-power-100598148/

Unix-ey systemsUnix-ey systems
Package managersPackage managers

Merkle treesMerkle trees

veriexec

... but where does it all start?... but where does it all start?

24 / 27

Once you've installed your signed software, it's also possible to check digital signature at run
time when you execute a program. JunOS / NetBSD / FreeBSD have a veriexec(1)
scheme that allows execution to be limited to signed files only. If you're running an embedded
applicance running a large portion of the Internet backbone, you probably want to ensure that
only your code is running on that applicance! However, much like Data Execution Prevention
(DEP, used for W^X and noexecstack), that doesn't prevent an attacker from "living off the
land" if they manage to subvert your code. It does, however, make their job harder, which is a
worthwhile thing.

Boot processBoot process
(a.k.a., bootstrapping)

"Secure" boot, "verified" boot, "measured" boot..."Secure" boot, "verified" boot, "measured" boot...

Trusted ComputingTrusted Computing initiative initiative

UEFI, "Certified for Windows 10/RT"...UEFI, "Certified for Windows 10/RT"...

25 / 27

The term "secure" boot is, unfortunately, a bit ambiguous. It can be used to mean one of two
very different things.

Verified boot means that a hardware component called the Trusted Platform
Module (TPM) gets involved in the boot process. This allows the bootloader's digital
signature to be checked and policies such as "you must use a bootloader signed by Microsoft"
can be enforced . If that initial "root of trust" verification fails, the system doesn't
boot.

An alternative is called measured boot, in which signatures are checked and the results are
stored in the TPM for later inspection by software. Nothing stops the computer from

booting with unsigned code, or code with an incorrect signature, but software can later check to
see what code booted it. In particular, the TPM can provide its "measurement list" as part of a

remote attestation procedure, allowing, e.g., a server to only accept connections
from computers booted from specific software signed by specific vendors.

This is all part of the trusted computing initiative, which was enormously controversial when it
was introduced. On the one hand, "trusted computing" could be help identify what code was
running where, which could have some security benefit. On the other hand, it could also be
used to prevent users from accessing DRM-protected content in "unapproved" ways or even
prevent users from running "unapproved" OSes. That is to say, the ownership model of your
computer would look more like that of your (non-jailbroken) phone: it wouldn't really be

your computer .

These days Microsoft has a program via which they will sign an open-source bootloader like
GRUB for a small fee. This allows even systems locked down with mandatory verified boot to
run non-Windows operating systems if the owner wants that .

https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process

SummarySummary
Code signingCode signing

interpreted code

native code

PlatformsPlatforms

26 / 27

