
Recall

Access control:

DAC (discretionary access control)

MAC (mandatory access control)

Today: sandboxing

below the OS: Jails, VMs and containers

in the OS: capability-based security
2 / 14

Sandboxing

Concept

Reality:

Processes and virtualization

DAC and MAC

Jails, VMs, containers

Capabilities

Source: Mac Observer

4 / 14

The term sandboxing comes from the idea of providing a safe, non-permanent
place in which to

playfully build and destroy things.
Sand castles are fun but impermanent: whatever structure you

put into them will
be washed away by the waves (another example of entropy at work!).

In computing, a sandbox is a notional container in which software can do
whatever it likes, doing

some sort of useful work, but confined so that
any malicious actions will have no

effect outside of the sandbox .
it's useful to be able to apply such confinement or isolation to

suspect software which may be malicious from inception — this means that
 we don't have to

trust it .
However, it's also helpful for software that
 starts well but is compromised by an

attacker – a far more frequent
necessity!
This does not prevent attacks , but it can

limit their damage .

You might well think, "wait a minute, aren't all processes isolated "?
That's certainly the

abstraction we've provided thus far.
 Virtualization ensures that processes can't directly

affect each other.
However, OS abstractions like files break this tidy isolation.

Furthermore, they are necessary: what would be the point of
 a program that can't leave any

traces of execution behind ?

Given that OS abstractions are the weak link here, it's not suprising that
people have tried to use

OS measures to confine programs.
We've seen DAC and MAC already, and there are

DAC and MAC policies that can
provide at least some level of sandboxing.
Today we'll also talk

about further levels of virtualization to implement
sandboxing, as well as a very different

approach that uses a concept called
 capabilities .

https://www.macobserver.com/tmo/article/understanding_the_debate_over_apples_mac_app_store_sandbox

DAC-based sandboxing

Unix

chroot(2) and privilege separation*

Android

Windows (-ish?)

LimitationsProvos, Friedl and Honeyman,
"Preventing Privilege Escalation",
Proceedings of the 12th USENIX Security
Symposium, 2003.

5 / 14

One way to prevent applications from accessing OS resources like
 files, sockets, etc. is

using Discretionary Access Control.

Since the early 2000s, many Unix systems have used privilege separation
to limit the damage that

can be done by a compromised application that runs
with superuser privilege.
A program that runs

with superuser privilege can use the chroot(2) system
call to limit itself to a portion of

the overall filesystem .
Such a program can then change user with setuid(2) to

a less-privileged
user account (historically called nobody).
In such a state, a program can only

access files within its chroot area,
and it can't do things that only the superuser is allowed to do.

This limits the damage that could be done
 if an attacker tricker the program into doing

something malicious .

In Android, each application can be assigned a different user ID , allowing
that

application to prevent other applications from accessing its
DAC-controlled resources.

Windows also has a concept of security IDs (SIDs) that can applied to
subjects

(processes) and objects (files, etc.) in order to enforce
Discretionary Access Control.
If you take

away a process' SID, it can't access any labeled objects any more!

In all of these cases, however, there are important limitations on
 what can be expressed with a

DAC policy .
For example, a chroot-ed process may not be able to access files outside of
its

chroot, but it can still perform arbitrary network operations !
A Windows process can

be prevented from accessing all labeled objects, but when
a colleague and I did some Chrome

sandboxing work, we found that
 external filesystems and network devices

d d ' h k h d " db d" (

https://www.usenix.org/legacy/event/sec03/tech/full_papers/provos_et_al/provos_et_al_html

didn't have SIDs!
So, an attacker who compromised a "sandboxed" process running as me (e.g., a

compartmentalized web browser) would be prevented from accessing my hard drive,
but not

my USB stick or my VPN !

MAC-based sandboxing

Unix

SELinux, AppArmor

resource namespaces

iOS / macOS

MAC framework and "entitlements"

Also powerboxes (not quite MAC)
6 / 14

One can also use MAC to try and sandbox applications.
MAC policies can be more expressive than

DAC policies, so in theory this can
work.

SELinux and, later, AppArmor, brought Mandatory Access Control to Linux.
It's possible to write

a MAC policy that confines processes quite strictly,
e.g., "browser renderer processes can never

access the network".
MAC is a natural way to express these kinds of static policies ,
but

dynamic policies that refer to this or that renderer process
are much less naturally

represented by MAC.
SELinux will give one process with the chrome_sandbox_t label the

same
access as another chrome_sandbox_t.
This is a problem if our goal is to separate my

Discord tab, with its complex
video handling code, from my Online Banking tab.
Also, these

policies can be stunningly complex .

iOS and, later, macOS, brought the FreeBSD MAC Framework into a slightly more
popular

operating system and used it to provide confinement and isolation of
applications.
In order to solve

the dynamic-access-to-stuff problem, it also brought in the
concept of a powerbox from a very

different access control model:
 capability-based access control .

Problems with DAC and MAC

Dual coding

Privilege

Coherence
7 / 14

DAC and MAC are both very helpful forms of access control within their intended
use cases.
They

are, however, awkward fits for the problem of compartmentalization
(a more general

description of sandboxing).
In addition to the limitations described above, DAC and

MAC have more problems
in common when applied to compartmentalization .

Dual coding refers to the problem of having to say the same thing twice :
first you write

code to say what your program should do , then you write
a security policy to say

what your program should be allowed to do .
Whenever dual coding occurs, whether it's

re-implementations of an algorithm
or a code/policy dichotomy, we introduce the risk of a

mismatch .
In security, mismatches typically cause us to fail open : people jump up

and
down when you fail closed , but when you fail open , the only ones who

notice are the attackers .

MAC and DAC also require privilege to use.
Only root can chroot(2) or setuid(2) to

limit privilege.
Only a system administrator can install a MAC policy.
Thus, in order to limit

privilege, you have to first have privilege !
This leads to unhelpful situations in which,

e.g., a setuid-root binary
(a huge security risk) is required in order to implement a security

mechanism!
 This is, by the way, a tension in a lot of security contexts!

Finally, DAC and MAC provide primitives that simply
 don't fit the problem of sandboxing

all that well .
A poorly-fitting abstraction will be a leaky abstraction , which can

cause
new problems while solving existing ones.
It also spurs mechanism-focussed

thinking : "I have a hammer, now find me
something that looks like a nail!"

Jails and VMs

Jail: group of namespace-restricted processes

BSD jails

Solaris zones

Linux containers (though a bit ad hoc)

VM: virtual machine

guest may be paravirtualized or host may employ emulation
8 / 14

Jails, zones or containers (e.g., Docker) group a collection of processes
together with some common

resources.
One OS kernal can host many such containers of processes.
The processes run as usual,

but they are much more limited in terms of what OS
objects (files, devices, etc.) they are able to

interact with.

Virtual machines take this approach even further, virtualizing not just
memory and CPU time (like

a process) or an OS kernel (like a jail),
but a whole computer .
Thus, multiple operating

systems can run on top of one CPU.
A paravirtualized OS kernel is in on the game: it knows that

it's running
as a regular process within a different OS, and when it wants to do privileged
things

like tweak virtual memory, it makes a hypercall to the "host"
operating system.
If your

hardware supports virtualization extensions, however, it can run an
 unmodified guest

OS , trapping on privileged instructions and allowing the
host OS to emulate hardware

actions like adjusting the guest's virtual memory.

The sandboxing cycle

Source: XKCD 2044

Choose your truth:

sharing is easy, isolation is hard

isolation is easy, sharing is hard

Need rigorous isolation... and controlled sharing

As in so much else, XKCD spotlights an awkward truth for us...

https://xkcd.com/2044

Capabilities

Means of expressing principle of least authority

not a permission or entitlement

not a POSIX.1e "capability"

software-level example: Java references

system-level example: ???

an unforgeable token of authority““ ””

10 / 14

The principle of least authority (sometimes called "principle of least
privilege") is the gold standard

of confinement, a way of programmatically
expressing and enforcing the ad hoc "need to know"

notion that we explored
earlier in the course.
Capabilities are a means that can be used to express

this notion,
but you have to get the expression right.

A system-level example of a capability is (almost!) is the
file descriptor.
Once you've opened a file,

you can interact with that specific file and
perform specific actions on it.

However, the analogy is incomplete, because a normal DAC policy will let you
do all kinds of

things with a file descriptor.
For example, you might want to sandbox a program so that it can only

read from
a file — OK, you can open it in read-only mode.
However, normal Unix DAC will also

let you change the file's permissions
even though you aren't allowed to write to it!

Capability-based systems

Languages: Java to ECMAScript 5

Web: Crypto URLs to WASI

OSes: Capsicum* to CloudABI and Fuschsia

Hardware: GE 645 to CHERI/Morello* Watson, Anderson, Laurie and Kennaway,
"Capsicum: practical capabilities for UNIX",
in Proceedings of the
19th USENIX Security Symposium,
2010.

11 / 14

Question

Consider a Java object called HashSet with methods
add, remove and contains.
If that

object is accessed through a Java interface called ReadOnlySet,
which only has the contains

method, will the accessing code be able to
modify the set?
 It depends: not if policy end-runs

like reflection are disabled!

https://cloudabi.org/
https://fuchsia.dev/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.usenix.org/legacy/events/sec10/tech/#Watson

Why capabilities?

Universal mechanism

vs ad hoc mechanisms

vs privileged mechanisms

Code alignment

... but requires more/better thinking
12 / 14

Rather than one set of mechanisms for separating processes, another set of
mechanisms for

separating containers and a complete different set of mechanisms
for separating virtual machines,

capabilities are meant to provide a common
way of describing objects and things you'd like to do

with them.
In reality, code-level capabilities, OS-level capabilities and network-level
capabilities are

implemented differently.
However, at least they can be aligned with one another to

express
 coherent security policies .

One key element of capability-based access control is the principle that
subjects should always be

allowed to monotonically reduce their privileges
without requiring system

privilege .
That is, if I have read-write access to something, I should always be able to
turn that

into read-only or write-only access.
I shouldn't have to ask permission.

Since capabilities are typically embodied in things like language references,
you don't have to

separately express what code should do and
 what code should be allowed to

do .

Sticking to a capability discipline requires thinking carefully about
 what code ought to be

able to see and do .
However, that discipline is the same discipline that you already need to

design
abstractions with good modularity , good dependency management

and
good testability .

Summary

Sandboxing

DAC and MAC

Jails, VMs and containers

Capabilities

Beyond sandboxing: compartmentalization
13 / 14

