
TodayToday
Security protocolsSecurity protocols

Protocol notationProtocol notation

ExamplesExamples

Needham—Schroeder and Kerberos

Di!ie-Hellman and TLS

2 / 15

Recall: Dolev-Yao attacker*Recall: Dolev-Yao attacker*
Communications should assume an attacker can:Communications should assume an attacker can:

1. observe all messages (passive eavesdropperpassive eavesdropper),

2. send messages impersonating users (activeactive attacker) and

3. intercept messages and drop or replace them (middlepersonmiddleperson).

Be explicit about trust and communication: Be explicit about trust and communication: security protocolssecurity protocols

* Dolev and Yao, "On the Security of Public Key Protocols", IEEE Transactions on Information Theory 29(2), 1983.
DOI: 10.1109/TIT.1983.1056650

3 / 15

https://doi.org/10.1109/TIT.1983.1056650

Security protocolsSecurity protocols
Rules for interaction among multiple partiesRules for interaction among multiple parties

notation and conventions

primitives

Implicit: understandings of Implicit: understandings of beliefbelief

can be modeled formally

not our focus

4 / 15

The protocol notation that we'll see in this class will describe things like messages that are sent
from one party to another and cryptographic primitives that are used to protect them.

It's possible to model these beliefs formally. The BAN logic was an early example of this, with
primitives such as:

: believes

: sees

: has jurisdiction over

It's also possible to model protocols in such a way that automated theorem proving can be
applied to them, using tools like ProVerif.

P ∣≡ X P X

P ◃ X P X

P ⇒ X P X

https://doi.org/10.1098/rspa.1989.0125
https://bblanche.gitlabpages.inria.fr/proverif

Security protocol notationSecurity protocol notation
PrimitivePrimitive NotationNotation MeaningMeaning

Message Alice sends the password to Bob

Hash Alice sends the hash of to Bob

Encryption is encrypted under Bob's key

Shared key is shared by Alice and Bob

Signature Signature of using

Nonce A number used once

Timestamp Alice sends Bob the current time

A → B : P P

A → B : h(P) P

A → B : {P}KB
P

A → B : {P}kAB
kAB

A → B : {P}K −1
A

P KA

A → B : NA

A → B : T
5 / 15

Note: this protocol notation includes no specification of which cryptographic
algorithms are used! Instead, cryptographic primitives are assumed to work correctly and
provide their promised poperties. Proofs can then be done using the Standard Model, or more
practically, in the Random Oracle Model that approximates cryptographic primitives with
functions that produce random values.

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-5906-5_518
https://link.springer.com/referenceworkentry/10.1007/978-1-4419-5906-5_220

Examples of common protocolsExamples of common protocols
Needham–Schroeder and KerberosNeedham–Schroeder and Kerberos

Di!ie-Hellman key exchangeDi!ie-Hellman key exchange

TLS: Transport Layer SecurityTLS: Transport Layer Security

OTR: O!-the-record messaging*, Signal and friendsOTR: O!-the-record messaging*, Signal and friends

* Borisov, Goldber and Brewer, "O!-the-record communication, or, why not to use PGP", in WPES '04:
Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004. DOI:
10.1145/1029179.1029200. }

6 / 15

https://doi.org/10.1145/1029179.1029200

Security protocol exampleSecurity protocol example
Needham–Schroeder protocolNeedham–Schroeder protocol

A → S : A, B, NA

S → A : { , , B, }NA kAB { , A}kAB kBS kAS

A → B : { , A}kAB kBS

B → A : { }NB kAB

A → B : { − 1}NB kAB

7 / 15

Hi server, I'm Alice and I'd like to talk to Bob. Here's a random number.

OK, Alice, if you really are Alice you'll be able to decrypt this information. Here's
your random number back (to prove that I know), a key you can use to talk to
Bob, Bob's identity and a ticket for you to give Bob.

Hi Bob, here's something that the server asked me to give you.

OK, if you really are Alice, you should be able to prove that you know by
decrypting and manipulating this nonce value.

What's the flaw?

There could be an arbitrary gap between messages 2 and 3 , which means that if
an attacker can learn even years later , they can replay this message to
gain access to . This has been fixed in Kerberos through the use of

timestamps .

kAB

kAB

kAB

B

Diffie-Hellman key exchangeDiffie-Hellman key exchange
Alice chooses random number , Bob chooses

But remember: there is a weakness!there is a weakness!

XA XB

A → B

B → A

: αXA

: αXB

(mod q)
(mod q)

kAB = αXAXB

= (mod q)αXA
XB

= (mod q)αXB
XA

(mod q)

(mod q)

(mod q)

8 / 15

We've described Diffie-Hellman key exhange before, using English prose, but now we'll see it
written down with a more formal notation. Hopefully this will help us spot the

weakness in the protocol!

At this point, and share a key. But who are and ? What basis do Alice and
Bob have to believe that is Alice and is Bob?

A B A B

A B

Middleperson attackMiddleperson attack

Alice BobMallory
KAM KBM

XA XM XB

A → M

M → A

: (mod q)αXA

: (mod q)αXMA

B → M

M → B

: (mod q)αXB

: (mod q)αXMB

kAM

kBM

= (mod q)αXAXMA

= (mod q)αXBXMB

9 / 15

Suppose we have a middleperson named Mallory () who acts as a Dolev-Yao
attacker, sitting on the wire between Alice and Bob.

When Alice sends her message to Bob, Mallory can intercept it. Mallory can then
impersonate Bob, so Alice and Mallory act out the first step of the protocol where Alice is
and Mallory is .

The same then happens to Bob: Bob thinks he's talking to Alice (Alice is and Bob is), but
in fact he's talking to Mallory. Thus, from Bob's perspective, Mallory is and Bob is .

After running the protocol with Mallory in the middle, Alice and Bob have established "secure"
communications using symmetric-key cryptography, but only in a technical sense, not a
meaningful sense!

M

αXA

A

B

A B

A B

Middleperson detectionMiddleperson detection
Alice BobMallory

KAM KBM
XA XM XB

"Wait a minute, that's not the same
as my !"

Q:Q: how do we check ?

A:A: TLS certificate authorities

A → M

M → A

B → M

M → B

A → B

: (mod q)αXA

: (mod q)αXM

: (mod q)αXB

: (mod q)αXM

: { }kAM K −1
A

kBM

KA

10 / 15

This works well as long as Bob knows for sure what Alice's key is . That's fine for
point-to-point communications, but what about Web browsing, in which I'm connecting to —
and needing to trust — services like my bank and my email provider?

Certificate authoritiesCertificate authorities
Recall:Recall:

Root CA signs (intermediate
CA signs)* entity certificate

Used for code signing,
started with SSL/TLS

Question:Question:
What if a certificate authority
were compromised or malicious?
Search terms: DigiNotar, TURKTRUST, Certificate TransparencyCertificate Transparency

Owner's name

Owner's public key

Issuer's (CA's)
name

Issuer's signature

End-entity Certificate

Root CA's name

Root CA's public key

Root CA's signature

Root Certificate

sign

sign

self-sign

reference

reference

Owner's (CA's) name

Owner's public key

Issuer's (root CA's)
name

Issuer's signature

Intermediate Certificate

Source: Wikimedia Commons

11 / 15

This is not a theoretical consideration! TLS puts a lot of trust in certificate authorities, so
mistakes made at a CA can have wide-ranging effects. CAs can also be high-value targets for
attackers seeking to break the confidentiality and integrity properties of TLS for large numbers
of users or, more worrying, small numbers of users (even targeted individuals).

https://commons.wikimedia.org/wiki/File:Chain_of_trust.svg

Certificate transparencyCertificate transparency
Certificate metadata:Certificate metadata:

certificate issuance

certificate auditing

cross-signing

Now Now requiredrequired by by ChromeChrome and and
SafariSafari (though not by (though not by FirefoxFirefox))

Source: certificate-transparency.org 12 / 15

Before issuing a cerrtificate, a CA will first ensure that the certificate has been logged in a
public append-only record (a kind of blockchain!). This gives them a Signed Certificate
Timestamp, which indicates when the certificate should be merged to the public log. This SCT
can then be included with certificate chains to say, "not only has my certificate been signed by
a chain that goes back to this CA, the CA has publically committed to having issued that
certificate." This means that, even if a CA goes rogue, they can't issue a certificate that my CT-
expecting browser will accept unless they tell the whole world that they issued it .

Website owners can then work with monitors who watch the public certificate logs and look for
funny business. For example, if a monitor notices that a new certificate was issued for
google.com but Google doesn't know anything about it, they can raise the alarm that
someone is trying to impersonate Google and they can prove who issued the fraudulent
certificate . This dramatically increases the risk for a rogue CA of issueing a fraudulent
certificate.

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/docs/certificate-transparency.md#Chrome-Policies
https://support.apple.com/en-gb/HT205280
https://developer.mozilla.org/en-US/docs/Web/Security/Certificate_Transparency#browser_requirements
https://www.certificate-transparency.org/how-ct-works

TLS: Transport Layer SecurityTLS: Transport Layer Security
Most important protocol on the InternetMost important protocol on the Internet

Most common example: HTTPS

Slow-moving train wreck from SSL 1.0 ⇒ successful TLS 1.3

Amazing example of di!iculty in herding cats

Shockingly di!icult to use correctly*Shockingly di!icult to use correctly*

* Georgiev et al., "The most dangerous code in the world: validating SSL certificates in non-browser so"ware", in
Proceedings of the 2012 ACM conference on Computer and communications security (CCS ’12), pp. 38–49, 2012.
DOI: 10.1145/2382196.2382204.

13 / 15

There has been a steady parade of attacks against SSL 1.0 through SSL 3.0 and then TLS 1.0
through TLS 1.2. These have exploited things has subtle as improper ordering of primitives
(encrypt-then-MAC vs MAC-then-encrypt) and incorrect padding within encryption. Weak
Diffie-Hellman parameters, lack of forward secrecy... there's so much that we could go into if
this were a course on the history of TLS vulnerabilities.

Aside from the difficulties of getting the protocol right, it's difficult to get people to use TLS
APIs correctly! APIs that expose complex and subtle behaviours to experts are — surprise! —
not always used correctly by non-experts who just want their app to "work".

— J.R.R. Tolkien, The Fellowship of the Ring

Do not meddle in the affairs of wizards, for they are subtle and quick to anger.“ ”

https://datatracker.ietf.org/doc/html/rfc8446
https://doi.org/10.1145/2382196.2382204

SummarySummary
Security protocolsSecurity protocols

Protocol notationProtocol notation

ExamplesExamples

Needham—Schroeder and Kerberos

Di!ie-Hellman and TLS

14 / 15

