
The story so far

Introduction

So�ware security

Host security

Network security

Web security
2 / 10



Today

What is a computer?

So�ware abstractions

memory

execution

resources
3 / 10



What is a computer?

Model from first year

CPU to execute instructions

memory to store information

external resources

This model isn't wrong, just
very abstract

4 / 10



A more realistic computer

Complex CPU:
Pipelining, instruction reordering, speculative execution...

Virtual memory:
Address != physical address, page faults, segmantation faults...

Let's look at some demos!
5 / 10

For those playing along at home:

pointer.cpp

vm.c

vm.cpp

vm.go

vm.py

Make�le

Look for:

Impossibly-large addresses

Various address ranges

Program counter

Space between memory regions

Arbitrary pointer arithmetic

https://introsec.ca/lecture/3/pointer.cpp
https://introsec.ca/lecture/3/vm.c
https://introsec.ca/lecture/3/vm.cpp
https://introsec.ca/lecture/3/vm.go
https://introsec.ca/lecture/3/vm.py
https://introsec.ca/lecture/3/Makefile


What did we just see?

Impossibly-large addresses

Various address ranges

Space between memory regions

Arbitrary pointer arithmetic

Memory's not just an array of bytes
6 / 10



A more realistic computer

Complex CPU:
Pipelining, instruction reordering, speculative execution...

Virtual memory:
Address != physical address, page faults, segmantation faults...

External resources:
Files, streams, descriptors... (more detail in ECE 8400 / ENGI 9875) 7 / 10



Summary: software abstractions

CPU:
PC (today), pipelining, re-ordering, race conditions and barriers,
speculative execution and SPECTRE/MELTDOWN

Memory
Virtual memory, memory regions, program layout, objects and
allocations lead to bu�er overflows, stack smashing, heap spraying,
integer overflows, stale data leakage, format string vulnerabilities...

Resources
Files and streams, IPC races, system call filter errors... 8 / 10

If we fail to think about software execution in all of its glorious complexity, we run the risk of

glossing over critical details.

So pay attention in concurrent programming !



Next time

Memory unsafety

bu�er overflows

stack smashing

heap spraying
9 / 10


