
Last timeLast time
SOPSOP

XSSXSS

CSRFCSRF

Don't trust user input!Don't trust user input!

2 / 27

SQL injectionSQL injection
Another example of input validation failureAnother example of input validation failure

Why is this important?Why is this important?

4 / 27

Remember this simple (but incomplete) model of a computer? Let's take a look
simple model of a program.

MVC patternMVC pattern
User interface

Controller Model
User

View

View

5 / 27

You've probably seen the model-view-controller (MVC) pattern in a Software
Design course, as it's a useful way of structuring programs that users interact with. As a side
note: you might not like the name, but it's better than the original name for Prof. Reenskaug's
architecture: "thing-model-view-editor"!

https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html

Desktop MVCDesktop MVC
User’s computer

Desktop environment

Controller Local files
User

View

View

6 / 27

The MVC pattern was first designed for desktop computers, and it is very commonly used
there. It also continues to appear in the cycle of technology trends in which everything
centralized becomes distributed and everything distributed becomes centralized:

remote access to applications via X terminal

local ("native") applications (desktop, phones pre-iPhone)

remote applications via the Web ("there's no SDK!")

native applications on phones ("what we call the App Store")

Web applications with native-like components (who needs native SDKs when you
have React?)

native applications based on Web technologies (React Native!)

Web applications based on native application technologies that adapt Web application
technology (React Native for Web)

https://en.wikipedia.org/wiki/X_terminal
https://www.youtube.com/watch?v=p1nwLilQy64
https://www.youtube.com/watch?v=xo9cKe_Fch8

Dynamic Web applicationDynamic Web application

Web client

Database server(s)Web server

User interface

Controller Database

User
View

View

Browser

Controller

View

View

8 / 27

This is a more practical view of a real Web application. Within the browser, a rich application
runs in JavaScript — and possibly WebAssembly — with code to control the UI and dynamic
DOM-based view components that may talk independently to the backend on a web server. On
that server, parts of the API may exist purely to serve view components, while other parts
control what data is allowed to flow where.

At the back end of the backend, there is almost always some kind of persistent store: a
database. It may be a traditional database with ACID properties , or it may be an

eventually-consistent database. It may be distributed , it may have
caching , but somewhere, data is stored. That data is often — not always, but often —

accessed using the lingua franca of databases, the Structured Query Language (SQL).

Structured query languageStructured query language
Language for interacting with databasesLanguage for interacting with databases

ISO/IEC 9075ISO/IEC 9075

SQL-92 (grammar)

SQL:1999, SQL:2003, SQL:2008, SQL:2011, SQL:2016, SQL:2019,
SQL:2020+...

Not the only DB language (Not the only DB language (CypherCypher, , GraphQLGraphQL...), but......), but...

9 / 27

SQL isn't the only language that can be used for accessing databases. Cypher is a query
language used for accessing graph databases stored in the Neo4j database; it includes language
syntax for dealing with nodes and edges and their relationship. GraphQL isn't, strictly
speaking, a database query language any more than a REST API or an HTTP POST handler
are. However, it is a language that a front-end can use to make queries about data stored in a
back-end, so many of the same principles will apply!

http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://jakewheat.github.io/sql-overview/sql-92-grammar.html
https://neo4j.com/developer/cypher-query-language
https://graphql.org/
https://neo4j.com/developer/cypher-query-language
https://neo4j.com/
https://graphql.org/

SQL exampleSQL example
select * from student
 where
 discipline=(select id from discipline where name='ONAE')
 and student_id > 200800000
 order_by name
 ;

(probably better to do this with an INNER JOIN, but this isn't a DB course...)

Admin varies (MSSQL, MySQL, Oracle, PostgreSQL, SQLite...)Admin varies (MSSQL, MySQL, Oracle, PostgreSQL, SQLite...)

Core language should be consistentCore language should be consistent

10 / 27

The way that you perform administrative actions like creating users or viewing a database's
scheme can vary from database to database.

The fundamentals of how we perform the basic CRUD operations (Create, Read, Update,
Delete) should be the same across all databases. Sometimes the performance of one approach
vs another (e.g., a subquery vs an inner join) can be different on different platforms, but the
semantics should be the same.

So what?So what?
Example: Engineering matchExample: Engineering match

Need to track students, preferences,
disciplines, capacities...

Hey, ECE is super-popular, let's add some more seats!“ ”
11 / 27

Updating ECE capacityUpdating ECE capacity

update discipline set capacity=50 where name='Computer';

POST /admin/discipline/Computer HTTP/1.1
Host: localhost:5000
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:68.0) Gecko/20100101 Firefox/68.0
[...]
Content-Type: multipart/form-data; boundary=---------------------------14849285061285938555493870477
Content-Length: 177
Cookie: mjx.menu=renderer%3ACommonHTML
-----------------------------14849285061285938555493870477
Content-Disposition: form-data; name="capacity"

50
-----------------------------14849285061285938555493870477

12 / 27

Here's an example of how a UI element can drive an API request (in this case, an HTTP POST
request) to cause an effect on the backend.

Q: what's missing from (the old version of) this request?

A: CSRF protection!

At the backend, that request is parsed and turned into a SQL statement that, when executed,
updates the database.

Web + SQL = all the thingsWeb + SQL = all the things
Very common anti-pattern:Very common anti-pattern:

insert into readings(temp, humid) values (28.7, 83.9);

sql(f'insert into readings(temp, humid) values {temp}, {humid};')

update employees set name='Jonathan Anderson' where id=1234567;

sql(f"update employees set name='{new_name}' where id={employee.id};")

13 / 27

This is a very common pattern in Web develoment: we want to accept data from a user (or,
more specifically, their user agent) and translate it into a SQL (or other) query to send to the
backend database. However, it's actually an anti-pattern, for reasons that we will describe
starting on the next slide...

https://en.wikipedia.org/wiki/Anti-pattern

The problemThe problem
f"update employees set name='{new_name}' where id={employee_id};"

POST /employee/1234567 HTTP/1.1
[...]
-----------------------------14849285061285938555493870477
Content-Disposition: form-data; name="name"

h4ckz0rd'; select * from employees; update employees set name='h4ckz0rd
-----------------------------14849285061285938555493870477--

update employees set name='h4ckz0rd';
select * from employees where name like '%';
update employees set name='h4ckz0rd' where id=1234567;

14 / 27

Let's say that we use the technique at the top of this slide to build a SQL query that updates an
employee ID in a database.

Q: What's the problem with constructing SQL queries in this way?

Hint: in the final part of Lab 5, you fuzzed a user's password, but you would also have
observed something else: that there were some passwords which would cause the server to
respond with neither an "access denied" message nor an "access granted" message, but
something else entirely: a partial HTML page. You may have also noticed that some of these
funny passwords contained a single-quote character ('). Why would that be?

Hint: What's the problem if we receive the POST request shown in the middle of this slide?

http://localhost:7420/lab/5#_password_fuzzing

Untrusted input strikes againUntrusted input strikes again

Darn those humans... computing would be easierDarn those humans... computing would be easier
without them (???)without them (???)

15 / 27

This is much like a program accepting input from a user (or a file) and passing it straight to a
shell program.

What to do?What to do?
First described in First described in late 1990slate 1990s

No shortage of purported solutions*No shortage of purported solutions*††∧∧

* Boyd and Keromytis, "SQLrand: Preventing SQL Injection Attacks", in ACNS 2004: Applied Cryptography and
Network Security, 2004. DOI: 10.1007/978-3-540-24852-1_21
† Halfond and Orso, "Combining static analysis and runtime monitoring to counter SQL-injection attacks", in
WODA '05 Proceedings of the third international workshop on Dynamic analysis, 2005. DOI:
10.1145/1082983.1083250
∧ Buehrer, Weide and Sivilotti, "Using parse tree validation to prevent SQL injection attacks", in SEM '05
Proceedings of the 5th international workshop on So!ware engineering and middleware, 2005. DOI:
10.1145/1108473.1108496
etc.

20 / 27

http://phrack.org/issues/54/8.html#article
https://doi.org/10.1007/978-3-540-24852-1_21
https://doi.org/10.1145/1082983.1083250
https://doi.org/10.1145/1108473.1108496

Common approachesCommon approaches
Scan for "bad" characters (e.g., Scan for "bad" characters (e.g., ')?)?

better hope you've thought of everything...

... and that you don't have any users from St. John's, NL

Parse with a SQL library?Parse with a SQL library?

Dynamic taint analysis?Dynamic taint analysis?

21 / 27

There are several approaches that can be taken to try and detect "bad" inputs from users.

We've previously seen the limitations in scanning for "bad" characters. Besides, what if there is
a legitimate need for a "bad" character, e.g., in St. John's? There are plenty of websites that
won't allow townies to create accounts.

Some kind of string escaping is a good idea, but we want to be sure to apply it uniformly, with
strong guarantees that it's done, not in an ad hoc "don't forget to escape the string over here
too!" kind of way.

We know to be careful about using multiple parsers for the same language in security-critical
code... subtle variations in parser semantics are what hackers dream of!

Dynamic taint analysis, while very cool-sounding, depends on things like your ability to
produce sufficient test cases to dynamically check. Like fuzzing software, it may be a sensible
risk mitigation technique, but it had better not be the only thing you're relying on!

https://siguza.github.io/psychicpaper

Practical advicePractical advice
If you find yourself writing:If you find yourself writing:

query = query + f"where name = {user_supplied_value}"

Or even:Or even:

query = query + anything

Stop!Stop!

22 / 27

Essentially, application code should never manually construct commands that will be received
as trusted input by something else. This is true for more than just SQL, but it's definitely true
for SQL.

Note that we can't solve this problem by simply saying, "the database shouldn't trust SQL
input". The application code running the database is authorized to do all kinds of things
with the database , so disallowing certain actions won't solve the fundamental problem.
Instead, we need a different approach to building SQL statements.

ORMORM
Object-relational mappingObject-relational mapping

Tool for handling the tricky bits of SQLTool for handling the tricky bits of SQL

You write object-oriented codeYou write object-oriented code

SQL experts write SQL query-building codeSQL experts write SQL query-building code

23 / 27

For SQL specifically, you should use an ORM instead of writing SQL statements. This allows
for a better division of responsibility between the authors of application code and framework
code.

ORM examplesORM examples
Peewee (Python):

return (User
 .select()
 .join(Relationship, on=Relationship.to_user)
 .where(Relationship.from_user == self)
 .order_by(User.username))

diesel.rs (Rust):

update(users.filter(email.like("%@spammer.com")))
 .set(banned.eq(true))
 .execute(&connection)

24 / 27

Separation of concernsSeparation of concerns
Would you write your own TCP/IP stack?Would you write your own TCP/IP stack?

Would you write your own crypto code?Would you write your own crypto code?

Don't hand-cra! your own SQL queries!Don't hand-cra! your own SQL queries!

25 / 27

The answer to the questions on this slide should be, "maybe for fun, or on an assignment, but
not in production!"

SQL injectionSQL injection
Web front-end / DB backendWeb front-end / DB backend

SQLSQL

SQL injection via untrusted inputSQL injection via untrusted input

26 / 27

