
Today

More memory issues: buffer overflows

stack smashing

heap spraying

Mitigations

2 / 13

Buffers

Useful things!

Demo: sum.c

a program that loads and sums some integers

example: numbers.dat

(also see Makefile)

3 / 13

It's been said that most of computing is a matter of transforming things from one representation

into another so that we can do computation (and then, likely, to transform those results into

another representation!). In order to do that, we often need to store information somewhere... like

in a buffer!

This example program loads integers from a file and adds their values together. Some things to note

as we walk through this example:

low-level file I/O functions from the C standard library

"hex" tools (binary viewing / manipulation using hex representations)

endianness

http://localhost:7420/lecture/3/sum.c
http://localhost:7420/lecture/3/numbers.dat
http://localhost:7420/lecture/3/Makefile

Buffer problems

Q: what if we load too much data?

For example:

big.dat

error.dat

4 / 13

If we load too much data into our buffer, we overwrite adjacent data . The consequences

of this depend on what the adjacent memory holds !

http://localhost:7420/lecture/3/big.dat
http://localhost:7420/lecture/3/error.dat

Buffer overflow

Without bounds checks... memory corruption!

What is the consequence of this corruption?

depends on how much we overflow the buffer

depends where the overflowed buffer is

5 / 13

When we attempt to process big.dat, we see a SIGSEGV in the C standard libary's memcpy
function. This is because we are copying in so much data that we walk right out of a virtual

memory allocation . We can investigate this with a debugger, examining the call

stack to see who called what.

When we attempt to process error.dat, we still see a SIGSEGV, but it's for a much more

interesting reason. When we try to investigate this case with a debugger, we can't even see a

call stack ! Why is this?

Loading 0x10 (i.e., 16) integers from the file error.dat overflows the eight-integer (i.e., 32 B) buffer

that we are loading into. This overwrites whatever comes after the buffer. The significance of that

depends on where the buffer we're loading into is located!

http://localhost:7420/lecture/3/big.dat
http://localhost:7420/lecture/3/error.dat
http://localhost:7420/lecture/3/error.dat

Local variables

Return address

Parameters

Local variables

Return address

Parameters

Local variables

…

main

foo

bar

The call stack

Given what we know about stacks...

If we overflow a local variable...

What happens?

error.dat

6 / 13

Loading 16 integers from the file error.dat overwrites whatever comes after the buffer we're loading

into. In the case of a local variable stored on the stack, this might be another local

variable , but it might also be any of the things that live on the stack between functions' local

variables. For example, it might be a return address !

http://localhost:7420/lecture/3/error.dat
http://localhost:7420/lecture/3/error.dat

Stack smashing

Changing return addresses can cause crashes

But can we get even more creative?

malice.dat
(compiled from sh.s: assembly for FreeBSD, Linux and OpenBSD)
This is known as "shellcode", as it "pops a shell"

See: "Smashing The Stack For Fun And Profit" by "Aleph One"

7 / 13

We can always get more creative. 🙂

"Popping a shell" can be a beachhead in an attack on a real system, as an attacker can then execute

arbitrary commands. It can also be a demonstration that the attacker could execute arbitrary

commands if they wanted to.

http://localhost:7420/lecture/3/malice.dat
http://localhost:7420/lecture/3/sh.s
https://insecure.org/stf/smashstack.html

What just happened?

Payload

loaded attacker-provided code into memory

all ready to be executed by...

Control-flow highjacking

in this case, overwriting the return address (two birds, one stone)

in other cases: other attacks!
8 / 13

Prevention

How can we prevent stack smashing?

write perfect software!

memory-safe languages (partial answer)

9 / 13

We will talk about memory safety in the next couple of lectures. We will also explore some of the

tools that we used in today's lecture in the upcoming labs!

Mitigations

How can we prevent/reduce stack smashing?

stack canaries: -fstack-protector

non-executable stacks (we needed -z execstack to demo!)

W^X: memory regions writable or executable (limitations?)

ASLR: address space layout randomization (more later)

... and more to follow
10 / 13

A stack canary, like a canary in a coal mine (fun picture here), is something that can be checked to

see if conditions are too dangerous to continue normal operations. In the case of a canary, it would

faint from carbon dioxide before humans would, sending a signal that the mine wasn't safe. In the

case of a stack, random values can be written to the stack in between functions'

allocations. Code is inserted to check this "canary" value when returning from a

function to ensure that it hasn't been overwritten .

Marking memory as non-executable is something that wasn't possible on 32-bit x86 computers, but

is possible on 64-bit x86_64 computers . This functionality can be used to prevent

executable stacks (always a good idea!) and/or a full W^X policy.

http://localhost:7420/lecture/3/Makefile
https://www.smithsonianmag.com/smart-news/story-real-canary-coal-mine-180961570/
http://history.alberta.ca/energyheritage/coal/the-early-development-of-the-coal-industry-1874-1914/early-methods-and-technology/canaries-in-the-coal-mine.aspx

The attacker strikes back

Guessing precise addresses is hard

nop sleds, relative addressing

Shellcode authors avoid zeroes (why?)

Is shellcode easy to spot? See: English shellcode*

* "English Shellcode", Mason, Small, Monrose and MacManus, in CCS '09: Proceedings of the 16th ACM conference
on Computer and communications security, 2009. DOI: 10.1145/1653662.1653725

11 / 13

For this demo to work, I had to embed the stack address that would store the program counter.

How did I do this? By printing out the address when I ran the program! That is not a

very reproducible solution. In reality, it may not be possible to guess where a piece of data will land

in a program's memory.

To deal with this difficulty, shellcode can include "nop sleds", which are long chains of nop
instructions with shellcode at the end. If the program counter lands anywhere within the nop sled,

it will "slide" all the way to the end and then execute the payload that's found there.

These kinds of payloads are often delivered via code that expects to read strings from somewhere (a

file, the network, the user, etc.). When the target code receives a string and passes to around to

functions, etc., it's very likely to need to run functions like strlen to figure out how much data

to pass, etc. So, a shellcode author needs to avoid zeros in their strings: if not, strlen will think

that it's reached the end of the string and then the code will cut off the

payload !

You might think that shellcode would be easy to spot, but you can hide all kinds of things inside

innocuous-looking content. Remember how, when we examined our malicious file with tools like

hexyl or xxd, many of the characters in the shellcode were displayed like ordinary ASCII

characters? A lot of instructions' opcodes are also valid ASCII text !

https://www.cs.jhu.edu/~sam/ccs243-mason.pdf
https://dx.doi.org/10.1145/1653662.1653725

Summary

Buffer overflows

Stack smashing

Heap spraying

Mitigations

... with more to follow!

12 / 13

