
Last time

Code injection

1. Inject code (e.g., copying payload into buffers)

2. Hijack control flow (e.g., stack smashing)

2 / 21

Today

Mitigations

Counter-mitigation attacks

Counter-counter-mitigation mitigations

3 / 21

Mitigations

How can we prevent/reduce stack smashing?

stack canaries: -fstack-protector

non-executable stacks (we needed -z execstack to demo!)

W^X: memory regions writable or executable (limitations?)

ASLR: address space layout randomization (more later)

... and more to follow
4 / 21

A stack canary, like a canary in a coal mine (fun picture here), is something that can be checked to

see if conditions are too dangerous to continue normal operations. In the case of a canary, it would

faint from carbon dioxide before humans would, sending a signal that the mine wasn't safe. In the

case of a stack, random values can be written to the stack in between functions'

allocations. Code is inserted to check this "canary" value when returning from a

function to ensure that it hasn't been overwritten .

Marking memory as non-executable is something that wasn't possible on 32-bit x86 computers, but

is possible on 64-bit x86_64 computers . This functionality can be used to prevent

executable stacks (always a good idea!) and/or a full W^X policy.

http://localhost:7420/lecture/4/Makefile
https://www.smithsonianmag.com/smart-news/story-real-canary-coal-mine-180961570/
http://history.alberta.ca/energyheritage/coal/the-early-development-of-the-coal-industry-1874-1914/early-methods-and-technology/canaries-in-the-coal-mine.aspx

The attacker strikes back

Guessing precise addresses is hard

nop sleds, relative addressing

Shellcode authors avoid zeroes (why?)

Is shellcode easy to spot? See: English shellcode*

* "English Shellcode", Mason, Small, Monrose and MacManus, in CCS '09: Proceedings of the 16th ACM conference
on Computer and communications security, 2009. DOI: 10.1145/1653662.1653725

5 / 21

For this demo to work, I had to embed the stack address that would store the program counter.

How did I do this? By printing out the address when I ran the program! That is not a

very reproducible solution. In reality, it may not be possible to guess where a piece of data will land

in a program's memory.

To deal with this difficulty, shellcode can include "nop sleds", which are long chains of nop
instructions with shellcode at the end. If the program counter lands anywhere within the nop sled,

it will "slide" all the way to the end and then execute the payload that's found there.

These kinds of payloads are often delivered via code that expects to read strings from somewhere (a

file, the network, the user, etc.). When the target code receives a string and passes to around to

functions, etc., it's very likely to need to run functions like strlen to figure out how much data

to pass, etc. So, a shellcode author needs to avoid zeros in their strings: if not, strlen will think

that it's reached the end of the string and then the code will cut off the

payload !

You might think that shellcode would be easy to spot, but you can hide all kinds of things inside

innocuous-looking content. Remember how, when we examined our malicious file with tools like

hexyl or xxd, many of the characters in the shellcode were displayed like ordinary ASCII

characters? A lot of instructions' opcodes are also valid ASCII text !

https://www.cs.jhu.edu/~sam/ccs243-mason.pdf
https://dx.doi.org/10.1145/1653662.1653725

Higher-level languages?

One mitigation: no stack access

Alternative technique: heap spraying

Create lots of shellcode strings (how much? try me!)

Even further: Heap Feng Shui*

Just need one control-flow hack to trigger

* Alexander Sotirov, "Heap Feng Shui in JavaScript", Black Hat Europe, 2007.
6 / 21

One way to stop stack smashing is to avoid letting user code access the stack : if they

can't write to stack memory , they can't overwrite it. However, that's not the only

memory of interest. In fact, with non-executable stacks, the stack isn't really the most interesting

any more!

Even very high-level languages running under bytecode interpreters will allow user code to create

strings on the heap. These strings can contain things like nop sleds that lead to shellcode... lots of

strings. How much heap data can you create? Check

window.performance.memory.jsHeapSizeLimit in your browser, for one. It's no

big deal to create hundreds of MiB of nop sleds all around a browser's memory, just waiting to be

exploited by a control-flow hijack.

It's important to note that heap spraying (in all of its flavours) doesn't actually execute an attack:

you still need to hijack control flow . We'll talk about some more ways this can be done

in a few minutes.

https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf

Stages of code injection

1. Inject code

2. Hijack control flow

7 / 21

Code injection

Writable buffers

any executable memory region

User-driven memory allocation

user is supposed to be able to request allocation

e.g., untrusted JavaScript allocates strings

8 / 21

In general, code injection can occur anywhere that code can be executed. That's typically not the

stack anymore, and we'll soon see that the executable places an attacker can write to are getting

scarcer over time.

However, we can't stop the attacker from allocating any memory: allocating memory is a pretty

important and legitimate function of every programming language environment!

Control-flow hijacking

Targets:

return addresses, function pointers (inc. vtables), conditions...

Approaches:

buffer overflows, integer under/over-flows, format string
vulnerabilities, application-level errors...

9 / 21

If code injection is the first step of a software attack, the second step is to make the injected code

actually run . This is done by subverting the regular control of the victim program.

Anything that can be used for legitimate control flow can also be subverted for

malicious control flow.

Targets:

Return addresses: As we saw last time, call-and-return is a critical form of control flow

for most programs, and it hinges on a detail of stack layout. If we can overwrite return addresses on

the stack, we can cause all sorts of mischief (even if we can no longer do the classic stack smashing

attack due to the default non-executable stack).

Function pointers: There are lots of reasons to use function pointers in real code. One

of the most prominent is in vtables, which support virtual methods in object-oriented

systems (whether or not the languages themselves are object-oriented!).

Conditions: Sometimes all an attacker wants to do is to make your program decide one

thing incorrectly. Should I let this user access that thing? Should I let the player into the game

without a license?

Approaches:

Buffer overflows: We saw these last time!

Integer under/over-flows: We'll look at these on the next slide.

Format string vulnerabilities: We'll talk about these in just a few minutes.

Application-level errors: We'll talk a lot about these when we get to Web security

(SQLi, XSS, CSRF...)

Integer overflow

Q: What is an integer? How about on a computer?

See demo code

Lesson: the details matter!

don't assume that integers behave like, well, integers

don't trust user input

use safe integer arithmetic (US-CERT, Microsoft)
10 / 21

An integer is a whole number that can be positive, negative or zero. What is the maximum value of

an integer? There is none .

On a computer, however, an integer in a register is not exactly the same as an integer in

mathematical terms. They are almost identical, but the small differences can matter a lot.

http://localhost:7420/lecture/4/integers.c
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safe-integer-operations
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/ntintsafe-design-guide

Integer overflow... still???
Over 3,000 reported CVEs, including dozens in 2024!

Firefox: CVE-2024-2608

LLaMA: CVE-2024-21836

TP-Link router: CVE-2024-25139

Windows Defender: CVE-2024-21420

Probably Cellebrite (older)

11 / 21

Integer overflow is still very much a going concern!

Cellebrite is a system for digital forensics relied on by police services around the world, and

apparently their own security practices were... not good. Sadly, this is all too common in the

security world: people not practicing what they preach. We'll talk more about Cellebrite later in

the course, but for now you may enjoy the following (genuinely amusing) read:

https://cyberlaw.stanford.edu/blog/2021/05/i-have-lot-say-about-signal’s-cellebrite-hack

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=integer+overflow
https://nvd.nist.gov/vuln/detail/CVE-2024-2608
https://nvd.nist.gov/vuln/detail/CVE-2024-21836
https://nvd.nist.gov/vuln/detail/CVE-2024-25139
https://nvd.nist.gov/vuln/detail/CVE-2024-21420
https://arstechnica.com/information-technology/2021/04/in-epic-hack-signal-developer-turns-the-tables-on-forensics-firm-cellebrite
https://cyberlaw.stanford.edu/blog/2021/05/i-have-lot-say-about-signal%E2%80%99s-cellebrite-hack

Format string vulnerabilities

See demo code

Lesson: the details matter!

don't trust user input

put user strings in values, sure

do not put user strings in format

also important for higher-level languages (e.g., Ruby)
12 / 21

http://localhost:7420/lecture/4/format-strings.c
https://nvd.nist.gov/vuln/detail/CVE-2008-2664

Notes about code injection

Modern MMUs and DEP

W^X policy

13 / 21

Your computer's memory management unit (MMU) is the thing that translates virtual addresses to

physical addresses. Along the way, there is an opportunity to check whether such a

translation should be allowed . Specific mappings can be marked as read-only, or as

inaccessible to user code, and on modern machines, as non-executable . This allows us to

prevent the execution of bytes in specific regions like the stack .

However, it's more general than that! In general, we would like to have memory be writable XOR

executable. If it's possible for an attacker to write in to the memory (whether directly, like

providing a buffer of shellcode, or indirectly, by tricking a program into writing some data in a

particular place), it should not be possible to execute that code. There are some exceptions (a JIT

engine, by definition, needs to be able to write out executable code), but normally we would like to

enforce a W^X policy that will completely prevent some of the attacks described in the previous

slides.

Stages of code injection

1. Inject code

2. Hijack control flow

But step 1 is getting harder!

What if...

14 / 21

Policies such as W^X make it much tougher to inject attacker-controlled code into memory that

can actually be executed. However, that doesn't mean that attackers just gave up! Instead, they did

what attackers do: they thought creatively, out of the box, not limited by the constraints that

defenders impose on them.

What if...

0. Inject code

1. Hijack control flow

What code do we execute?

15 / 21

Is it possible to attack running software without injecting code? If we could still hijack the control

flow of a program (which seems to often be the case!) and put non-executable data in memory

(e.g., on the stack), how could we still have a viable attack?

What code would we even excute?

Return to libc

Uses existing code from libc

e.g., return to system()

Especially easy on 32b x86

16 / 21

If you can't add code to memory, you'll just have to use what's already there! This kind of "living

off the land" is possible because there is already quite a lot of code lying around in memory. For

example, there is lots of code in the standard C library, which gets loaded into just about every

process running on your system.

One common thing we'd like to be able to do when we attack a program is... anything! We'd like a

general-purpose tool for letting us execute arbitrary commands once we've broken into a process,

and libc provides us with just such a tool: the system(2) system call. This will allow us to

execute any program we like, and if that program is a shell program, we can execute more arbitrary

actions.

ROP

Return-oriented programming*

Generalization of return-to-libc attack

Relies on existing "gadgets" (instruction + ret)

Can be automated (e.g., ROPC, Ropper)

* See, e.g., Roemer et al, "Return-Oriented Programming: Systems, Languages, and Applications", ACM TISSEC
15(1), 2012. DOI: https://doi.org/10.1145/2133375.2133377

17 / 21

For fun, try out the tutorials at https://ropemporium.com !

https://github.com/pakt/ropc
https://github.com/sashs/Ropper
https://doi.org/10.1145/2133375.2133377
https://ropemporium.com/

ASLR

Address Space Layout Randomization

Not super-helpful on 32b platforms

Increases "work factor"

But maybe not by as much as you think!*

* "ASLR on the Line: Practical Cache Attacks on the MMU", Gras, Razavi, Bosmen, Box an Giuffrida, Proceedings of
the 2017 Networked and Distributed Systems Security Symposium, 2017. DOI:
https://dx.doi.org/10.14722/ndss.2017.23271.

18 / 21

Defenders can make the attacker's life harder by ensuring that libc (and other code) isn't loaded

at the same location every time.

On a 32b machine, however, we might only have 16b or even 8b available for randomization. A

lack of randomness seems bad in a defensive technique called "randomization", but why? What

would more randomness give us?

ASLR doesn't provide definitive protection . Unlike other security techniques, it won't

always say "no" to an attack. What it will do is make an attacker have to do additional

work . For example, on a 32b system, an attacker might have to try their attack 128 or

32,768 times in order to succeed.

Practical attacks exist that use low-level properties of things like memory management units

(MMUs) to break ASLR, even from JavaScript code!

https://dx.doi.org/10.14722/ndss.2017.23271

Code reuse attacks

0. Inject code

1. Hijack control flow

How do we stop the hijacking?

19 / 21

Stopping hijacking

Stack protection

Non-executable memory
Stack canaries (-fstack-protector)

CFI: control flow integrity

Static analysis, dynamic enforcement

Full memory safety (next time)
20 / 21

