Last time
Code injection

1. Inject code (e.g., copying payload into buffers)

2. Hijack control flow (e.g., stack smashing)

Mitigations

21




Mitigations
How can we prevent/reduce stack smashing?

e non-executable stacks (we needed —z execstack to demo!)

W”X: memory regions writable or executable (limitations?)

stack canaries: —fstack-protector

ASLR: address space layout randomization (more later)

.. and more to follow



http://localhost:7420/lecture/4/Makefile

The attacker strikes back
Guessing precise addresses is hard

NOP sleds, relative addressing
Shellcode authors avoid zeroes (why?)

Is shellcode easy to spot? See: English shellcode*

* "English Shellcode", Mason, Small, Monrose and MacManus, in CCS '09: Proceedings of the 16th ACM conference

on Computer and communications security, 2009. DOI: 10.1145/1653662.1653725
4/21



https://www.cs.jhu.edu/~sam/ccs243-mason.pdf
https://dx.doi.org/10.1145/1653662.1653725

Today
Mitigation details

Counter-mitigation attacks

Counter-counter-mitigation mitigations

21




Higher-level languages?
One mitigation: no stack access

Alternative technique: heap spraying

e Create lots of shellcode strings

e Just need one control-flow hack to trigger

/21




Stages of code i1injection
1. Inject code

2. Hijack control flow

/21




Code 1njection
Writable buffers

e any memory region: heap, stack or BSS
User-driven memory allocation

e user is supposedto be able to request allocation

e e.g., untrusted JavaScript allocates strings

21




Control-flow hijacking
Targets

Buffer overflow

e as demonstrated last class!
Integer under/over-flow

Format string vulnerabilities

/21

Return addresses (last class), function pointers, vtables, conditions...




Integer overflow
See demo code

Lesson: the details matter!

e don't assume that integers behave like, well, integers
e don't trust userinput

e use safe integer arithmetic (US-CERT, Microsoft)

10/21



http://localhost:7420/lecture/4/integers.c
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safe-integer-operations
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/ntintsafe-design-guide

Integer overflow... still???
e OpenSSL: https://nvd.nist.gov/vuln/detail/CVE-2021-23840

e Linux: https://nvd.nist.gov/vuln/detail/CVE-2021-3490

e Windows: https://www.fortinet.com/blog/threat-
research/microsoft-kernel-integer-overflow-vulnerability.html

e probably: https://arstechnica.com/information-
technology/2021/04/in-epic-hack-signal-developer-turns-the-
tables-on-forensics-firm-cellebrite

11/21

Integer overflow is stil/ very much a going concern!

Another great read about this hack: https://cyberlaw.stanford.edu/blog/2021/05/i-have-lot-say-

about-signal’s-cellebrite-hack



https://nvd.nist.gov/vuln/detail/CVE-2021-23840
https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://www.fortinet.com/blog/threat-research/microsoft-kernel-integer-overflow-vulnerability.html
https://arstechnica.com/information-technology/2021/04/in-epic-hack-signal-developer-turns-the-tables-on-forensics-firm-cellebrite
https://cyberlaw.stanford.edu/blog/2021/05/i-have-lot-say-about-signal%E2%80%99s-cellebrite-hack

Format string vulnerabilities
See demo code

Lesson: the details matter!

e don't trust userinput
o put user strings in values, sure
o do not put user strings in format
e also important for higher-level languages (e.g., Ruby)

12/21



http://localhost:7420/lecture/4/format-strings.c
https://nvd.nist.gov/vuln/detail/CVE-2008-2664

Stages of code i1injection
1. Inject code

2. Hijack control flow
But step 1 is getting harder!

What if...

14/21

Policies such as W*X make it much tougher to inject attacker-controlled code into memory that
can actually be executed. However, that doesn't mean that attackers just gave up! Instead, they
did what attackers do: they thought creatively, out of the box, not limited by the constraints that
defenders impose on them.




What 1f...
01njeetcode

1. Hijack control flow

What code do we execute?

15/21

Is it possible to attack running software without injecting code? If we could still hijack the
control flow of a program (which seems to often be the case!) and put non-executable data in

memory (e.g., on the stack), how could we still have a viable attack?

What code would we even excute?




Return to libc

Uses existing code from libc
e.g., return to system()

Especially easy on 32b x86

16/21

If you can't add code to memory, you'll just have to use what's already there! This kind of
"living off the land" is possible because there is already quite a lot of code lying around in
memory. For example, there is lots of code in the standard C library, which gets loaded into just

about every process running on your system.

One common thing we'd like to be able to do when we attack a program is... anything! We'd
like a general-purpose tool for letting us execute arbitrary commands once we've broken into a
process, and 1ibc provides us with just such a tool: the system(2) system call. This will
allow us to execute any program we like, and if that program is a shell program, we can

execute more arbitrary actions.




ROP

Return-oriented programming*
Generalization of return-to-libc attack
Relies on existing "gadgets" (instruction + ret)

Can be automated (e.g., ROPC, Ropper)

* See, e.g., Roemer et al, "Return-Oriented Programming: Systems, Languages, and Applications", ACM TISSEC

15(1), 2012. DOI: https://doi.org/10.1145/2133375.2133377
17/21

For fun, try out the tutorials at https://ropemporium.com!



https://github.com/pakt/ropc
https://github.com/sashs/Ropper
https://doi.org/10.1145/2133375.2133377
https://ropemporium.com!/

ASLR

Address Space Layout Randomization
Not super-helpful on 32b platforms
Increases "work factor"

But maybe not by as much as you think!*

* "ASLR on the Line: Practical Cache Attacks on the MMU", Gras, Razavi, Bosmen, Box an Giuffrida, Proceedings of
the 2017 Networked and Distributed Systems Security Symposium, 2017. DOI:
https://dx.doi.org/10.14722/ndss.2017.23271.

18/21

Defenders can make the attacker's life harder by ensuring that Libc (and other code) isn't
loaded at the same location every time.

On a 32b machine, however, we might only have 16b or even 8b available for randomization. A
lack of randomness seems bad in a defensive technique called "randomization", but why? What

would more randomness give us?

ASLR . Unlike other security techniques, it

won't always say "no" to an attack. What it will do is make an attacker have to do

. For example, on a 32b system, an attacker might have to

in order to succeed.

Practical attacks exist that use low-level properties of things like memory management units
(MMUs) to break ASLR, even from JavaScript code!



https://dx.doi.org/10.14722/ndss.2017.23271

Code reuse attacks
01njeetcode

1. Hijack control flow

How do we stop the hijacking?

9/21




Stopping hijacking

Stack protection

Non-executable memory
Stack canaries (-fstack—-protector)

CFIl: control flow integrity

Static analysis, dynamic enforcement

Full memory safety (next time!)

20/21




