
Last timeLast time
Code injectionCode injection

1. Inject code (e.g., copying payload into bu!ers)

2. Hijack control flow (e.g., stack smashing)

MitigationsMitigations

2 / 21

MitigationsMitigations
How can we prevent/reduce stack smashing?How can we prevent/reduce stack smashing?

non-executable stacks (we needed -z execstack to demo!)

W^X: memory regions writable oror executable (limitations?)

stack canaries: -fstack-protector

ASLR: address space layout randomization (more later)

... and more to follow... and more to follow

3 / 21

http://localhost:7420/lecture/4/Makefile

The attacker strikes backThe attacker strikes back
Guessing precise addresses is hardGuessing precise addresses is hard

NOP sleds, relative addressing

Shellcode authors avoid zeroes (why?)Shellcode authors avoid zeroes (why?)

Is shellcode easy to spot? See: Is shellcode easy to spot? See: English shellcodeEnglish shellcode**

* "English Shellcode", Mason, Small, Monrose and MacManus, in CCS '09: Proceedings of the 16th ACM conference
on Computer and communications security, 2009. DOI: 10.1145/1653662.1653725

4 / 21

https://www.cs.jhu.edu/~sam/ccs243-mason.pdf
https://dx.doi.org/10.1145/1653662.1653725

TodayToday
Mitigation detailsMitigation details

Counter-mitigation attacksCounter-mitigation attacks

Counter-counter-mitigation mitigationsCounter-counter-mitigation mitigations

5 / 21

Higher-level languages?Higher-level languages?
One mitigation: no stack accessOne mitigation: no stack access

Alternative technique: Alternative technique: heap sprayingheap spraying

Create lots of shellcode strings

Just need one control-flow hack to trigger

6 / 21

Stages of code injectionStages of code injection
1. Inject code1. Inject code

2. Hijack control flow2. Hijack control flow

7 / 21

Code injectionCode injection
Writable bu!ersWritable bu!ers

any memory region: heap, stack or BSS

User-driven memory allocationUser-driven memory allocation

user is supposed to be able to request allocation

e.g., untrusted JavaScript allocates strings

8 / 21

Control-flow hijackingControl-flow hijacking
TargetsTargets

Bu!er overflowBu!er overflow

as demonstrated last class!

Integer under/over-flowInteger under/over-flow

Format string vulnerabilitiesFormat string vulnerabilities

9 / 21

Return addresses (last class), function pointers, vtables, conditions...

Integer overflowInteger overflow
See See demo codedemo code

Lesson: the details matter!Lesson: the details matter!

don't assume that integers behave like, well, integers

don't trust user input

use safe integer arithmetic (US-CERT, Microso")

10 / 21

http://localhost:7420/lecture/4/integers.c
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safe-integer-operations
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/ntintsafe-design-guide

Integer overflow... still???Integer overflow... still???
OpenSSL: https://nvd.nist.gov/vuln/detail/CVE-2021-23840

Linux: https://nvd.nist.gov/vuln/detail/CVE-2021-3490

Windows: https://www.fortinet.com/blog/threat-
research/microso"-kernel-integer-overflow-vulnerability.html

probably: https://arstechnica.com/information-
technology/2021/04/in-epic-hack-signal-developer-turns-the-
tables-on-forensics-firm-cellebrite

11 / 21

Integer overflow is still very much a going concern!

Another great read about this hack: https://cyberlaw.stanford.edu/blog/2021/05/i-have-lot-say-
about-signal’s-cellebrite-hack

https://nvd.nist.gov/vuln/detail/CVE-2021-23840
https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://www.fortinet.com/blog/threat-research/microsoft-kernel-integer-overflow-vulnerability.html
https://arstechnica.com/information-technology/2021/04/in-epic-hack-signal-developer-turns-the-tables-on-forensics-firm-cellebrite
https://cyberlaw.stanford.edu/blog/2021/05/i-have-lot-say-about-signal%E2%80%99s-cellebrite-hack

Format string vulnerabilitiesFormat string vulnerabilities
See See demo codedemo code

Lesson: the details matter!Lesson: the details matter!

don't trust user input

put user strings in values, sure

do notnot put user strings in format

also important for higher-level languages (e.g., Ruby)

12 / 21

http://localhost:7420/lecture/4/format-strings.c
https://nvd.nist.gov/vuln/detail/CVE-2008-2664

Stages of code injectionStages of code injection
1. Inject code1. Inject code

2. Hijack control flow2. Hijack control flow

But step 1 is getting harder!But step 1 is getting harder!

What if...What if...

14 / 21

Policies such as W^X make it much tougher to inject attacker-controlled code into memory that
can actually be executed. However, that doesn't mean that attackers just gave up! Instead, they
did what attackers do: they thought creatively, out of the box, not limited by the constraints that
defenders impose on them.

What if...What if...
0. Inject code0. Inject code

1. Hijack control flow1. Hijack control flow

What code do we execute?What code do we execute?

15 / 21

Is it possible to attack running software without injecting code? If we could still hijack the
control flow of a program (which seems to often be the case!) and put non-executable data in
memory (e.g., on the stack), how could we still have a viable attack?

What code would we even excute?

Return to libcReturn to libc
Uses existing code from Uses existing code from libc

e.g., return to e.g., return to system()

Especially easy on 32b x86Especially easy on 32b x86

16 / 21

If you can't add code to memory, you'll just have to use what's already there! This kind of
"living off the land" is possible because there is already quite a lot of code lying around in
memory. For example, there is lots of code in the standard C library, which gets loaded into just
about every process running on your system.

One common thing we'd like to be able to do when we attack a program is... anything! We'd
like a general-purpose tool for letting us execute arbitrary commands once we've broken into a
process, and libc provides us with just such a tool: the system(2) system call. This will
allow us to execute any program we like, and if that program is a shell program, we can
execute more arbitrary actions.

ROPROP
Return-oriented programmingReturn-oriented programming**

Generalization of return-to-libc attackGeneralization of return-to-libc attack

Relies on existing "gadgets" (instruction + Relies on existing "gadgets" (instruction + ret))

Can be automated (e.g., Can be automated (e.g., ROPCROPC, , RopperRopper))

* See, e.g., Roemer et al, "Return-Oriented Programming: Systems, Languages, and Applications", ACM TISSEC
15(1), 2012. DOI: https://doi.org/10.1145/2133375.2133377

17 / 21

For fun, try out the tutorials at https://ropemporium.com!

https://github.com/pakt/ropc
https://github.com/sashs/Ropper
https://doi.org/10.1145/2133375.2133377
https://ropemporium.com!/

ASLRASLR
Address Space Layout RandomizationAddress Space Layout Randomization

Not super-helpful on 32b platformsNot super-helpful on 32b platforms

Increases "work factor"Increases "work factor"

But maybe not by as much as you think!*But maybe not by as much as you think!*

* "ASLR on the Line: Practical Cache Attacks on the MMU", Gras, Razavi, Bosmen, Box an Giu!rida, Proceedings of
the 2017 Networked and Distributed Systems Security Symposium, 2017. DOI:
https://dx.doi.org/10.14722/ndss.2017.23271.

18 / 21

Defenders can make the attacker's life harder by ensuring that libc (and other code) isn't
loaded at the same location every time.

On a 32b machine, however, we might only have 16b or even 8b available for randomization. A
lack of randomness seems bad in a defensive technique called "randomization", but why? What
would more randomness give us?

ASLR doesn't provide definitive protection . Unlike other security techniques, it
won't always say "no" to an attack. What it will do is make an attacker have to do

additional work . For example, on a 32b system, an attacker might have to try
their attack 128 or 32,768 times in order to succeed.

Practical attacks exist that use low-level properties of things like memory management units
(MMUs) to break ASLR, even from JavaScript code!

https://dx.doi.org/10.14722/ndss.2017.23271

Code reuse attacksCode reuse attacks
0. Inject code0. Inject code

1. Hijack control flow1. Hijack control flow

How do we stop the hijacking?How do we stop the hijacking?

19 / 21

Stopping hijackingStopping hijacking
Stack protectionStack protection

Non-executable memory
Stack canaries (-fstack-protector)

CFI: control flow integrityCFI: control flow integrity

Static analysis, dynamic enforcement

Full Full memory safetymemory safety (next time!) (next time!)

20 / 21

