
PreviouslyPreviously
Stages of code injectionStages of code injection

1. Inject code1. Inject code

2. Hijack control flow2. Hijack control flow

But step 1 is getting harder!But step 1 is getting harder!

2 / 17

Why?

What if...What if...
0. Inject code0. Inject code

1. Hijack control flow1. Hijack control flow

What code do we execute?What code do we execute?

3 / 17

ASLRASLR
Address Space Layout RandomizationAddress Space Layout Randomization

Not super-helpful on 32b platformsNot super-helpful on 32b platforms

Increases "work factor"Increases "work factor"

But maybe not by as much as you think!*But maybe not by as much as you think!*

* "ASLR on the Line: Practical Cache Attacks on the MMU", Gras, Razavi, Bosmen, Box an Giu!rida, Proceedings of
the 2017 Networked and Distributed Systems Security Symposium, 2017. DOI:
https://dx.doi.org/10.14722/ndss.2017.23271.

4 / 17

Defenders can make the attacker's life harder by ensuring that libc (and other code) isn't
loaded at the same location every time.

On a 32b machine, however, we might only have 16b or even 8b available for randomization. A
lack of randomness seems bad in a defensive technique called "randomization", but why? What
would more randomness give us?

ASLR doesn't provide definitive protection . Unlike other security techniques, it
won't always say "no" to an attack. What it will do is make an attacker have to do

additional work . For example, on a 32b system, an attacker might have to try
their attack 128 or 32,768 times in order to succeed.

Practical attacks exist that use low-level properties of things like memory management units
(MMUs) to break ASLR, even from JavaScript code!

https://dx.doi.org/10.14722/ndss.2017.23271

Code reuse attacksCode reuse attacks
0. Inject code0. Inject code

1. Hijack control flow1. Hijack control flow

How do we stop the hijacking?How do we stop the hijacking?

5 / 17

Stopping hijackingStopping hijacking
Stack protectionStack protection

Canaries (-fstack-protector)

CFI: control flow integrityCFI: control flow integrity

Static analysis, dynamic enforcement

Full Full memory safetymemory safety

... which we'll discuss next time!
6 / 17

Memory safetyMemory safety
How can we perfectly prevent such attacks?How can we perfectly prevent such attacks?

write perfect so"ware!

memory-safe languages
(partialpartial answer)

Source: Chromium project

7 / 17

https://www.chromium.org/Home/chromium-security/memory-safety

Program executionProgram execution
Q: how do we load a value fromQ: how do we load a value from
memory?memory?

A: it depends on the language!A: it depends on the language!

compiled

interpreted

bytecode-interpreted

8 / 17

Different languages provide for different modes of memory access.

How do we categorize languages?

programing paradigm (OO, functional, etc.)

memory management (manual vs garbage-collected)

compiled vs interpreted

Compiled languagesCompiled languages
Examples?Examples?

Where are memory access decisions made?Where are memory access decisions made?

9 / 17

Examples of languages that compile to machine instructions: C , C++ ,
Fortran , Go , Haskell , Rust ...

The compiler may prevent certain kinds of accesses at compile time. For example,
some code is supposed to be able to access private fields but other code isn't (see
example: private.cpp). However, at runtime, all we have are machine instructions
that load and store values.

http://localhost:7420/lecture/5/private.cpp

Bytecode-interpreted languagesBytecode-interpreted languages
What's di!erent?What's di!erent?

Why?Why?

11 / 17

A bytecode-interpreted language (e.g., anything that runs on the JVM) includes a
specification for its bytecode. Instead of interpreting Java or Scala, those languages

can be compiled to the Java bytecode format, which is executed by a lower-level
interpreter . This is also true for WebAssembly : you can compile

languages like C , Go , Java and Rust (see:
https://github.com/appcypher/awesome-wasm-langs) into WebAssembly and then
execute the result in any Web browser with much greater speed than interpreting from source.

In a bytecode-interpreted language, we get some of the benefits of compilation, e.g., we don't
have to parse a bunch of program text every time we run the program. We also get some of the
benefits of an interpreter, such as run-time checking of memory accesses ! That
means we can't, for example, walk off the end of an array.

https://github.com/appcypher/awesome-wasm-langs

Example: JavaExample: Java
Memory managementMemory management

Memory accessMemory access

Bytecode and TCBsBytecode and TCBs

SecurityManager

Li Gong et al., "Going Beyond the Sandbox: An Overview of the New Security Architecture in the Java
Development Kit 1.2", in USITS '97: Proceedings of the USENIX Symposium on Internet Technologies and
Systems, 1997.

13 / 17

However, there is no such thing as a free lunch. One of the costs of using any sort of interpreter
is that the interpreter becomes part of the TCB ... and thus we tend to have a

very large TCB !

Java, in particular, also has interesting facilities for disabling features like reflection, which by
design circumvent the normal type rules of the language.

https://www.usenix.org/legacy/publications/library/proceedings/usits97/full_papers/gong/gong.pdf

So... perfection?So... perfection?
Write all so"ware in a memory-safe language?Write all so"ware in a memory-safe language?

TCB considerationsTCB considerations

Memory safety in compiled languagesMemory safety in compiled languages

1. Compiler-added run-time safety checks

2. Limited unsafety

3. Continued dangers of native instructions

14 / 17

High-level language interpreters have to be written in something. You might be able to write a
lot of a Java interpreter in Java, but at the lowest levels you will find lots and lots of C++ code.
At the lowest levels of the C standard library, you will find assembly code ,
sometimes generated from scripts .

Languages like Go and Rust claim to provide memory safety, but they are
compiled languages. How is this possible?

The compiler can add extra code to check some accesses at run time. For example, if you are
indexing within an array, the compiler can implicitly add code such as if 0 <= i < n.

Languages that aspire to "systems programming" (i.e., things that have to be aware of or
manipulate the lowest-level primitives such as hardware registers) have to allow for unsafe
operations. There is no memory-safe way to perform arbitrary register, memory or I/O
operations, so these kinds of languages have to provide some way to break abstraction layers. C
code can include assembly via the asm keyword. Rust code can explictly violate memory
safety guarantees if it uses the unsafe keyword.

Even with those checks, however, if you load someone else's native instructions and execute
them, all bets are off !

Safe compiled code?Safe compiled code?
What is a language?What is a language?

So"wareSo"ware

AddressSanitizer, CCured, Cyclone, "fat pointers", Go, Rust, ...

Hardware:Hardware:

Arm MTE, CHERI, Hardbound, MPX, segmentation, Watchdog, ...

15 / 17

When we think of a language, we typically think about source code and the
rules for writing it. However, in addition to rules , we also have
tools that are defined by language specifications and — crucially — runtime

support libraries . If we take this expanded view of what makes a language, we can see a
number of approaches applied in various places that can be used to improve the security of
compiled code, too.

Software

AddressSanitizer (and other "sanitizers" like Thread Sanitizer and the Undefined Behaviour
Sanitizer) can help spot memory errors during testing that might otherwise have gone
unnoticed. CCured is an example of an approach that uses static analysis to figure out how
pointers in a C program are "meant" to be used and dynamic analysis to ensure that they are, in
fact, used that way. Cyclone is a C dialect with better memory safety properties than vanilla C,
which it is designed to be compatible with (or at least easy to adapt from). Newer languages
like Go and Rust have more expressive type systems that make it possible to write memory-
safe code even in high-performance compiled languages with limited run-time checking.

Hardware

Arm MTE has been adopted by Android to detect memory safety violations at run time.
Hardbound, MPX and Watchdog attempt to provide various forms of hardware memory safety

https://clang.llvm.org/docs/AddressSanitizer.html
https://doi.org/10.1145/565816.503286
https://cyclone.thelanguage.org/wiki/Papers
https://golang.org/
https://www.rust-lang.org/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1145/1353534.1346295
https://doi.org/10.1145/3224423
https://doi.org/10.1109/ISCA.2012.6237017
https://clang.llvm.org/docs/AddressSanitizer.html
https://doi.org/10.1145/565816.503286
https://cyclone.thelanguage.org/wiki/Papers
https://golang.org/
https://www.rust-lang.org/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://doi.org/10.1145/1353534.1346295
https://doi.org/10.1145/3224423
https://doi.org/10.1109/ISCA.2012.6237017

enforcement. CHERI is a designed-for-security instruction set extension for ARM and MIPS
that is just about to ship its first hardware prototypes; it has the potential to change

everything by allowing high-level object accesses to be precisely enforced by
hardware.

https://doi.org/10.1109/ISCA.2014.6853201

SummarySummary
Memory safetyMemory safety

Memory-safe language conceptsMemory-safe language concepts

Safe unsafe languages?Safe unsafe languages?

16 / 17

