
Previously

Code injection

Mitigations

Counter-mitigation strategies

Counter-counter-mitigation mitigations

2 / 16

Code injection

1. Inject code

writable buffers

user-driver memory allocation

2. Hijack control flow

targets: return addresses, function pointers, conditions...

approaches: buffers, integers, format strings, application logic...
3 / 16

Mitigations

How can we prevent/reduce stack smashing?

stack canaries: -fstack-protector

non-executable stacks (we needed -z execstack to demo!)

no stack access

4 / 16

A stack canary, like a canary in a coal mine (fun picture here), is something that can be checked to
see if conditions are too dangerous to continue normal operations. In the case of a canary, it would
faint from carbon dioxide before humans would, sending a signal that the mine wasn't safe. In the
case of a stack, random values can be written to the stack in between functions'
allocations. Code is inserted to check this "canary" value when returning from a
function to ensure that it hasn't been overwritten .

http://localhost:7420/lecture/5/Makefile
https://www.smithsonianmag.com/smart-news/story-real-canary-coal-mine-180961570/
http://history.alberta.ca/energyheritage/coal/the-early-development-of-the-coal-industry-1874-1914/early-methods-and-technology/canaries-in-the-coal-mine.aspx

Counter-mitigation strategies

nop sleds

Heap spraying

Disguised shellcode

5 / 16

Counter-counter-mitigation
mitigations

Modern MMUs

W^X policy

6 / 16

Your computer's memory management unit (MMU) is the thing that translates virtual addresses to
physical addresses. Along the way, there is an opportunity to check whether such a
translation should be allowed . Specific mappings can be marked as read-only, or as
inaccessible to user code, and on modern machines, as non-executable . Marking
memory as non-executable is something that wasn't possible on 32-bit x86 computers, but is
possible on 64-bit x86_64 computers . This allows us to prevent the execution of bytes
in specific regions like the stack .

However, it's more general than that! In general, we would like to have memory be writable XOR
executable. If it's possible for an attacker to write in to the memory (whether directly, like
providing a buffer of shellcode, or indirectly, by tricking a program into writing some data in a
particular place), it should not be possible to execute that code. There are some exceptions (a JIT
engine, by definition, needs to be able to write out executable code), but normally we would like to
enforce a W^X policy that will completely prevent some of the attacks described in the previous
slides.

So...

Stages of code injection

1. Inject code

2. Hijack control flow

But step 1 is getting harder!

7 / 16

What if...

0. Inject code

1. Hijack control flow

What code do we execute?

8 / 16

If the attacker can't inject any code, the only code that can be run is the code that's already
there . But what can an attacker do with that?

What is a program?

Where does a program come from?

programmer intent

source code

object code

executable binary + linked libraries

Final result: bytes
9 / 16

At the end of this long process of compilation and execution, we end up with bytes in
memory . Those bytes were generated via a long and complex process that started with the
intentions of a programmer, but now they are just bytes that represent

instructions for the computer.

So what if we use those bytes to reflect the intent of a different programmer ?

What is a program?

How does a program work?

CPU executes instructions linearly (mostly)

can branch to other instructions

can call and return

How can an attacker control return?

10 / 16

We've seen how an attacker can control the return from a function by modifying the return address
on the stack. This is helpful when redirecting control flow to code that an attacker has injected, but
what can they do when they can't put executable code into the process' memory?

Return to libc

Uses existing code from libc

e.g., return to system()

Especially easy on 32b x86

11 / 16

If you can't add code to memory, you'll just have to use what's already there! This kind of "living
off the land" is possible because there is already quite a lot of code lying around in memory. For
example, there is lots of code in the standard C library, which gets loaded into just about every
process running on your system.

One common thing we'd like to be able to do when we attack a program is... anything! We'd like a
general-purpose tool for letting us execute arbitrary commands once we've broken into a process,
and libc provides us with just such a tool: the system(2) system call. This will allow us to
execute any program we like, and if that program is a shell program, we can execute more arbitrary
actions.

ROP

Return-oriented programming*

Generalization of return-to-libc attack

Relies on existing "gadgets" (instruction + ret)

Can be automated (e.g., ROPC, Ropper)

* See, e.g., Roemer et al, "Return-Oriented Programming: Systems, Languages, and Applications", ACM TISSEC
15(1), 2012. DOI: https://doi.org/10.1145/2133375.2133377

12 / 16

But we can go even further than this!

Instead of just trying to "return" to function in libc that do interesting things like run other
programs, we can build programs using little "gadgets" that are already lying around in
memory.

What is a gadget?

Suppose the attacker would like to write a little program that pops a few values off the stack and
then calls a function. They can't inject this malicious code themselves, but they can probably find
quite a few instances of functions that end in interesting instructions like:

pop %rbp
ret

If you find enough of these gadgets, you can construct a whole program by pushing their return
addresses on the stack, causing them to be executed one after the other .

Now, building programs from whatever instrutions you have lying around is a very challenging
compilation problem, but people have built tools that use heuristics to automate it. For fun, try
out the tutorials at https://ropemporium.com; we'll also see some ROP in our third lab.

https://github.com/pakt/ropc
https://github.com/sashs/Ropper
https://doi.org/10.1145/2133375.2133377
https://ropemporium.com/

ASLR

Address Space Layout Randomization

Not super-helpful on 32b platforms

Increases "work factor"

But maybe not by as much as you think!*

* "ASLR on the Line: Practical Cache Attacks on the MMU", Gras, Razavi, Bosmen, Box an Giuffrida, Proceedings of
the 2017 Networked and Distributed Systems Security Symposium, 2017. DOI:
https://dx.doi.org/10.14722/ndss.2017.23271.

13 / 16

Defenders can make the attacker's life harder by ensuring that libc (and other code) isn't loaded
at the same location every time.

On a 32b machine, however, we might only have 16b or even 8b available for randomization. A
lack of randomness seems bad in a defensive technique called "randomization", but why? What
would more randomness give us?

ASLR doesn't provide definitive protection . Unlike other security techniques, it won't
always say "no" to an attack. What it will do is make an attacker have to do additional
work . For example, on a 32b system, an attacker might have to try their attack 128 or
32,768 times in order to succeed.

Practical attacks exist that use low-level properties of things like memory management units
(MMUs) to break ASLR, even from JavaScript code!

https://dx.doi.org/10.14722/ndss.2017.23271

Code reuse attacks

0. Inject code

1. Hijack control flow

How do we stop the hijacking?

14 / 16

Stopping hijacking

Stack protection

Non-executable memory
Stack canaries (-fstack-protector)

CFI: control flow integrity

Static analysis, dynamic enforcement

Full memory safety (next time)
15 / 16

