
Previously

Stages of code injection

1. Inject code

2. Hijack control flow

But step 1 is getting harder!

2 / 15

Code reuse attacks

0. Inject code

1. Hijack control flow

How do we stop the hijacking?

3 / 15

Stopping hijacking

Stack protection

CFI: control flow integrity

Full memory safety

... which we'll discuss next time ... which is now

4 / 15

Memory safety

Two categories:

spatial memory safety

temporal memory safety

How to achieve?

write perfect so�ware!

memory-safe languages Source: Chromium project
5 / 15

Spatial memory safety refers to an inability for code to write outside of de�ned
boundaries. For example, modi�cations to an array should not be able to cause changes outside of
that array. Modi�cations to an object should not be able to cause changes outside of that object.

A related concept is temporal memory safety: an inability of code to access memory
when it's not supposed to . For example, some code could be given a pointer to a heap-

allocated object; we would like to know that this code will only be able to modify that memory as
long as the object remains allocated . is is also why friends don't let friends return

pointers to local variables from functions: that pointer used to point at a local variable,
but now it points at some arbitrary chunk of stack memory that could be used for anything.

Writing perfect software is... not a realistic plan. People make mistakes, so we had better build
systems that can accommodate the occasional human error!

Memory-safe languages, although excellent, are only a partial answer to the general
problem. We'll talk about why at the end of this lecture.

Counterpoint: if one person’s brief lapse in judgement can bring down the whole org, we’re
building our systems all wrong.

— @trombonehero.bsky.social

““
We need to make online security a mandatory subject in our schools. It's not just about
protection of personal devices and data, but one person's brief lapse in judgement can
bring down a school, a payroll system, or a hospital. 2/2
— Kimler for SC (@kimlerforsc.bsky.social) May 12, 2024 at 5:56 PM

““
””
””

https://www.chromium.org/Home/chromium-security/memory-safety
https://bsky.app/profile/did:plc:2vjn5xqhbft2yzqiejabaqqx?ref_src=embed
https://bsky.app/profile/did:plc:2vjn5xqhbft2yzqiejabaqqx/post/3ksddsmegzw2e?ref_src=embed
https://bsky.app/profile/did:plc:2vjn5xqhbft2yzqiejabaqqx/post/3ksddsmegzw2e?ref_src=embed
https://bsky.app/profile/did:plc:2vjn5xqhbft2yzqiejabaqqx/post/3ksddsmegzw2e?ref_src=embed
https://bsky.app/profile/did:plc:2vjn5xqhbft2yzqiejabaqqx/post/3ksddsmegzw2e?ref_src=embed
https://bsky.app/profile/did:plc:m3topjwoknohxc4cwcr7zwra?ref_src=embed
https://bsky.app/profile/did:plc:m3topjwoknohxc4cwcr7zwra/post/3kscyexgags2i?ref_src=embed

Program execution

Q: how do we load a value from
memory?

A: it depends on the language!

compiled

interpreted

bytecode-interpreted

6 / 15

Different languages provide for different modes of memory access.

How do we categorize languages?

programing paradigm (OO, functional, etc.)

memory management (manual vs garbage-collected)

compiled vs interpreted

Compiled languages

Examples?

Where are memory access decisions made?

7 / 15

Examples of languages that compile to machine instructions: C , C++ ,
Fortran , Go , Haskell , Rust ...

e compiler may prevent certain kinds of accesses at compile time. For example, some
code is supposed to be able to access private �elds but other code isn't (see example:
private.cpp). However, at runtime, all we have are machine instructions that

load and store values.

http://localhost:7420/lecture/6/private.cpp

Interpreted languages

Examples?

Where are memory access decisions made?

8 / 15

Examples of languages that are at least primarily intepreted (they may use just-in-time (JIT)
compilation or even ahead-of-time (AOT) compilation as an implementation
detail) include JavaScript , Lua , Python , Ruby and, of
course, shell scripts .

In such languages, other people's code doesn't get compiled directly to native machine
instructions, it is interpreted . An interpreted language has an interpreter that
can make additional decisions about how (or whether!) to honour a request made by an interpreted
statement or expression.

For example, in private.js, the code outside of the f function has no way to inspect the low-level
memory details of the object returned from f. e question of whether or not to allow an access
doesn't depend on machine instructions , it depends on the interpreter .

http://localhost:7420/lecture/6/private.js

Bytecode-interpreted languages

What's di�erent?

Why?

9 / 15

A bytecode-interpreted language (e.g., anything that runs on the JVM) includes a
speci�cation for its bytecode. Instead of interpreting Java or Scala, those languages can

be compiled to the Java bytecode format, which is executed by a lower-level interpreter .
is is also true for WebAssembly : you can compile languages like C ,

Go , Java and Rust (see: https://github.com/appcypher/awesome-
wasm-langs) into WebAssembly and then execute the result in any Web browser with
much greater speed than interpreting from source.

In a bytecode-interpreted language, we get some of the bene�ts of compilation, e.g., we don't have
to parse a bunch of program text every time we run the program. We also get some of the bene�ts
of an interpreter, such as run-time checking of memory accesses ! at means we can't,
for example, walk off the end of an array.

https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs

Example: Java

Memory management

Memory access

Bytecode and TCBs

SecurityManager

Li Gong et al., "Going Beyond the Sandbox: An Overview of the New Security Architecture in the Java
Development Kit 1.2", in USITS '97: Proceedings of the USENIX Symposium on Internet Technologies and
Systems, 1997.

11 / 15

A Java program, like any other program, runs in a process that has a virtual
address space . One key difference from compiled programs, however, is that the user code is
never exposed to those virtual addresses . It's kind of like a virtualization of a
virtualization of real physical memory. Instead of pointers, Java programs see

references , and unlike pointers, you can't just dream up new references .

In such a bytecode-interpreted language, all memory accesses have to go through the
interpreter .

However, there is no such thing as a free lunch. One of the costs of using any sort of interpreter is
that the interpreter becomes part of the TCB ... and thus we tend to have a very
large TCB !

Java, in particular, also has interesting facilities for disabling features like re�ection, which by
design circumvent the normal type rules of the language. A SecurityManager running on the
JVM will also allow you to control access to external resources like �les and network sockets. You
can even attach privileges like "can access this external URL" to speci�c pieces of code based on the
code's identity... but more about that later when we get to the lecture on Code Signing.

https://www.usenix.org/legacy/publications/library/proceedings/usits97/full_papers/gong/gong.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usits97/full_papers/gong/gong.pdf

So... perfection?

Write all so�ware in a memory-safe language?

TCB considerations

Memory safety in compiled languages

1. Compiler-added run-time safety checks

2. Limited unsafety

3. Continued dangers of native instructions
12 / 15

High-level language interpreters have to be written in something. You might be able to write a lot
of a Java interpreter in Java, but at the lowest levels you will �nd lots and lots of C++ code. At the
lowest levels of the C standard library, you will �nd assembly code , sometimes

generated from scripts .

Languages like Go and Rust claim to provide memory safety, but they are
compiled languages. How is this possible?

e compiler can add extra code to check some accesses at run time. For example, if you are
indexing within an array, the compiler can implicitly add code such as if 0 <= i < n.

Languages that aspire to "systems programming" (i.e., things that have to be aware of or
manipulate the lowest-level primitives such as hardware registers) have to allow for unsafe
operations. ere is no memory-safe way to perform arbitrary register, memory or I/O operations,
so these kinds of languages have to provide some way to break abstraction layers. C code can
include assembly via the asm keyword. Rust code can explictly violate memory safety guarantees if
it uses the unsafe keyword.

Even with those checks, however, if you load someone else's native instructions and execute them,
all bets are off !

Safe compiled code?

What is a language?

So�ware

AddressSanitizer, CCured, Cyclone, "fat pointers", Go, Rust, ...

Hardware:

Arm MTE, CHERI, Hardbound, MPX, segmentation, Watchdog, ...

13 / 15

When we think of a language, we typically think about source code and the
rules for writing it. However, in addition to rules , we also have
tools that are de�ned by language speci�cations and — crucially — runtime

support libraries . If we take this expanded view of what makes a language, we can see a
number of approaches applied in various places that can be used to improve the security of
compiled code, too.

Software

AddressSanitizer (and other "sanitizers" like read Sanitizer and the Unde�ned Behaviour
Sanitizer) can help spot memory errors during testing that might otherwise have gone unnoticed.
CCured is an example of an approach that uses static analysis to �gure out how pointers in a C
program are "meant" to be used and dynamic analysis to ensure that they are, in fact, used that
way. Cyclone is a C dialect with better memory safety properties than vanilla C, which it is
designed to be compatible with (or at least easy to adapt from). Newer languages like Go and Rust
have more expressive type systems that make it possible to write memory-safe code even in high-
performance compiled languages with limited run-time checking.

Hardware

Arm MTE has been adopted by Android to detect memory safety violations at run time.
Hardbound, MPX and Watchdog attempt to provide various forms of hardware memory safety
enforcement. CHERI is a designed-for-security instruction set extension for ARM and MIPS that
is just about to ship its �rst hardware prototypes; it has the potential to change

everything by allowing high-level object accesses to be precisely enforced by hardware.

https://clang.llvm.org/docs/AddressSanitizer.html
https://doi.org/10.1145/565816.503286
https://cyclone.thelanguage.org/wiki/Papers
https://golang.org/
https://www.rust-lang.org/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1145/1353534.1346295
https://doi.org/10.1145/3224423
https://doi.org/10.1109/ISCA.2012.6237017
https://clang.llvm.org/docs/AddressSanitizer.html
https://doi.org/10.1145/565816.503286
https://cyclone.thelanguage.org/wiki/Papers
https://golang.org/
https://www.rust-lang.org/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://doi.org/10.1145/1353534.1346295
https://doi.org/10.1145/3224423
https://doi.org/10.1109/ISCA.2012.6237017
https://doi.org/10.1109/ISCA.2014.6853201

Summary

Memory safety

Memory-safe language concepts

Safe unsafe languages?

14 / 15

