
Last time

Memory safety

Memory-safe language concepts

Safe unsafe languages?

2 / 12

So... perfection?

Write all software in a memory-safe language?

TCB considerations

Memory safety in compiled languages

1. Compiler-added run-time safety checks

2. Limited unsafety

3. Continued dangers of native instructions
3 / 12

High-level language interpreters have to be written in something. You might be able to write a lot
of a Java interpreter in Java, but at the lowest levels you will find lots and lots of C++ code. At the
lowest levels of the C standard library, you will find assembly code , sometimes

generated from scripts .

Languages like Go and Rust claim to provide memory safety, but they are
compiled languages. How is this possible?

The compiler can add extra code to check some accesses at run time. For example, if you are
indexing within an array, the compiler can implicitly add code such as if 0 <= i < n.

Languages that aspire to "systems programming" (i.e., things that have to be aware of or
manipulate the lowest-level primitives such as hardware registers) have to allow for unsafe
operations. There is no memory-safe way to perform arbitrary register, memory or I/O operations,
so these kinds of languages have to provide some way to break abstraction layers. C code can
include assembly via the asm keyword. Rust code can explictly violate memory safety guarantees if
it uses the unsafe keyword.

Even with those checks, however, if you load someone else's native instructions and execute them,
all bets are off !

Safe compiled code?

What is a language?

Software

AddressSanitizer, CCured, Cyclone, "fat pointers", Go, Rust, ...

Hardware:

Arm MTE, CHERI, Hardbound, MPX, segmentation, Watchdog, ...

4 / 12

When we think of a language, we typically think about source code and the
rules for writing it. However, in addition to rules , we also have
tools that are defined by language specifications and — crucially — runtime

support libraries . If we take this expanded view of what makes a language, we can see a
number of approaches applied in various places that can be used to improve the security of
compiled code, too.

Software

AddressSanitizer (and other "sanitizers" like Thread Sanitizer and the Undefined Behaviour
Sanitizer) can help spot memory errors during testing that might otherwise have gone unnoticed.
CCured is an example of an approach that uses static analysis to figure out how pointers in a C
program are "meant" to be used and dynamic analysis to ensure that they are, in fact, used that
way. Cyclone is a C dialect with better memory safety properties than vanilla C, which it is
designed to be compatible with (or at least easy to adapt from). Newer languages like Go and Rust
have more expressive type systems that make it possible to write memory-safe code even in high-
performance compiled languages with limited run-time checking.

Hardware

Arm MTE has been adopted by Android to detect memory safety violations at run time.
Hardbound, MPX and Watchdog attempt to provide various forms of hardware memory safety
enforcement. CHERI is a designed-for-security instruction set extension for ARM and MIPS that
is just about to ship its first hardware prototypes; it has the potential to change

everything by allowing high-level object accesses to be precisely enforced by hardware.

https://clang.llvm.org/docs/AddressSanitizer.html
https://doi.org/10.1145/565816.503286
https://cyclone.thelanguage.org/wiki/Papers
https://golang.org/
https://www.rust-lang.org/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1145/1353534.1346295
https://doi.org/10.1145/3224423
https://doi.org/10.1109/ISCA.2012.6237017
https://clang.llvm.org/docs/AddressSanitizer.html
https://doi.org/10.1145/565816.503286
https://cyclone.thelanguage.org/wiki/Papers
https://golang.org/
https://www.rust-lang.org/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://doi.org/10.1145/1353534.1346295
https://doi.org/10.1145/3224423
https://doi.org/10.1109/ISCA.2012.6237017
https://doi.org/10.1109/ISCA.2014.6853201

Today

Finding memory safety violations

testing

formal methods

hybrid approaches

5 / 12

Testing

Default approach... if we're lucky!

Code coverage

what's that?

gcov, llvm-cov, SanitizerCoverage...

Limitations

6 / 12

Hopefully software developers are employing practices such as test-driven development .
Testing software helps us find defects, but it's more valuable than just that: designing software to be
testable also tends to encourage modularity via clear abstrations with

information hiding , all of which also help with software quality. So, testing is good in
more than one way, and we know we ought to do it! Let's be honest, though: we don't always do
what we know we ought to do. And even when we do, how much testing is enough ?

We'll have a little demo involving code coverage data, how it's generated and how it's used.

Testing is great, but ultimately testing can never prove the absence of bugs : it can only
demonstrate their presence .

Formal methods

Modeling programs

Proving properties of programs*
and compilers†

Curry-Howard Correspondence
* Can prove more than you'd think, e.g., Cook et al., Proving that programs eventually do something good, ACM
SIGNPLAN Notices 42(1), 2007 (DOI: 10.1145/1190215.1190257) and Cook et al., Proving Program Termination,
Communications of the ACM 54(5), 2011, (DOI: 10.1145/1941487.1941509).
† e.g., Kästner et al., CompCert: Practical experience on integrating and qualifying a formally veritied optimizing
compiler , ERTS 2018: Embedded Real Time Software and Systems, 2018.

8 / 12

Constructing a model of a high-level functional program is one thing: after all, functional
programming languages take their cues from mathematics! Constructing a model of a low-level
program in a language with lots of side effects and pointer-based indirection ,
however, is something else.

People do, however, use formal methods in real (albiet someone size-limited) systems. The seL4
microkernel has been formally verified by first verifying a model, then generating code from that
model, then proving that the generated code corresponds to the model. That's not quite proving
properties about C code, but it's close!

In addition to proving properties about software in its source code, one practical (though
computationally-challenging) approach is to prove properties about software in its binary
executable form. This is useful for the artifact that ultimately matters most: what runs
on the real machine . To do this, you need a formal model not of your software, but of the
hardware it will execute on.

People also use certifying compiler to prove that the output of a compiler really
matches its inputs. This is meant to address the problem raised in Ken Thompson's famous Turing
Award lecture, Reflections on trusting trust. COMPCERT is such a compiler... although every new
release "fixes a few bugs"??

If you like monads, π-calculus or intuitionistic modalities... or just better type
systems ! Why are functional programs easier to verify? Because the language doesn't let
you do certain things . The more sophisticated the type system, the fewer programs you can
write... with the caveat that the programs you can't write are the unsound ones. For a lot
of programmers (including me!), a type checker is more natural to work with than a

proof assistant .

https://dx.doi.org/10.1145/1190215.1190257
https://dx.doi.org/10.1145/1190215.1190257
https://dx.doi.org/10.1145/1941487.1941509
https://dx.doi.org/10.1145/1941487.1941509
https://hal.inria.fr/hal-01643290
https://hal.inria.fr/hal-01643290
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/ACL2____SOFTWARE-VERIFICATION?path=3764/36439
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/ACL2____SOFTWARE-VERIFICATION?path=3764/36439
https://dl.acm.org/doi/10.1145/358198.358210

Hybrid approaches

Concolic testing:

model checking

concolic execution

Fuzzing

9 / 12

Concolic is a portmanteau of concrete and symbolic . It aims to be practical
(the concrete execution part, not just all theorems) while also gaining some of the generality of
symbolic approaches.

Model checking is heavily used by hardware engineers to verify (not just test) things like
state machines.

Concolic execution can be applied to real software using tools like KLEE. In such testing (for
which we'll have a brief demo if there's time), we can run real test cases while telling the tool
(KLEE in this case) that it should treat some values as symbolic , i.e., effectively try

all possible values instead of one specific one. This can help us spot tricky corner cases
that might escape our testing!

Fuzzing is the process of running software with inputs that we mutate a little bit every time we run
it. This isn't strictly as powerful as concolic execution, but it benefits from being highly practical:
we can fuzz software without adapting it for concolic execution.

https://verificaeconvalida.gitlab.io/gitbook-appunti/KLEE.html

Fuzzing

Black-box fuzzing

Glass-box fuzzing

DART, SAGE, AFL, LibFuzzer
OSS-Fuzz and its trophies

10 / 12

Black-box fuzzing mutates input data with no knowledge of the target program's internals. This can
find bugs, but it's not as powerful as glass-box fuzzing.

In glass-box fuzzing, we allow the compiler to instrument programs, much like coverage
tools . This information is then used to decide whether we've explored the control-flow graph
of a particular function, etc., "enough". It can also be used to decide whether two fuzz-created
crashes are effectively the same !

There are lots of tools for doing glass-box fuzzing. We'll have a demo (time permitting) of AFL:
American Fuzzy Lop (named for a species of fuzzy rabbit).

The large-scale OSS-Fuzz project applies fuzzing to a number of critical, widely-used open-source
software projects. It includes components with fun names like ClusterFuzz, and it also has quite a
few trophies in large, complex projects.

https://patricegodefroid.github.io/public_psfiles/pldi2005.pdf
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
http://lcamtuf.coredump.cx/afl
https://www.llvm.org/docs/LibFuzzer.html
https://github.com/google/oss-fuzz
https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=status%3AFixed%2CVerified+Type%3ABug%2CBug-Security+-component%3AInfra+
https://github.com/google/AFL
https://github.com/google/AFL
https://google.github.io/clusterfuzz
https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=status%3AFixed%2CVerified+Type%3ABug%2CBug-Security+-component%3AInfra+

Summary

Testing

Formal methods

Hybrid approaches

... to mitigate risk

11 / 12

All of this work — with the exception of formal proof, which is limited in scope — serves to
mitigate the risks of imperfect software.

