
So far

Introduction

So�ware security

Host security

Network security

Web security

2 / 25

Today

Processes

Users

Next time:

Authorization

3 / 25

Processes

A process is a running program

Processes have memory

Processes execute

Processes have indirect access to I/O

4 / 25

We've been working with processes already, but we haven't really de�ned them. A process is just a

running program , and it runs on a virtualized computer. To see the processes

that are currently running on your computer, you can use a GUI like Activity Monitor or Task

Manager, or you can use the ps command at the command line.

Run ps aux | wc -l on macOS, FreeBSD.

e addresses used directly by your software are virtual addressess . is is why, when

the same code is executed in ten processes in parallel, they can all refer to the same

addresses , but without interference.

e OS must schedule processes for execution, deciding which process will get to run on which

processor at which time. is is a topic for ECE 8400 / ENGI 9875.

External resources such as data on a disk or a network connection are generally/typically/almost

always represented as �les .

Files
Multiple abstraction layers:

new PrintWriter(new BufferedWriter(new Fil

std::cout << "Hello, world!" << std::endl;

fwrite(stdout, "Hello, world!\n");

char message[] = "Hello, world!\n";
int fd = STDOUT_FILENO;
write(fd, message, sizeof(message));

5 / 25

ere are lots of ways to look at �les from lots of levels of abstraction. Each layer tends to add

something nice and/or helpful, but at bottom, all of these layers' concepts of �les are rooted in an

OS-level abstraction . is is because no library can control a disk: only privileged

CPU instructions executed by the operating system can.

is is another example of how some interfaces are more "real" than others. Interfaces within a

single address space — such as library APIs — can wrap up the functionality of lower-level

libraries, but when it comes down to the level of CPU instructions (as in a

compiled programming language), there is no "real" separation among them. However,

interfaces between different kinds of things (users and computers, processes and the OS,

software and hardware) tend to be much clearer, "harder" interfaces.

Process file abstractions

Each process has a set of integer file descriptors

Can use system calls to open, close, read, write, etc.

int fd = open("/home/jon/hello.txt", O_RDONLY);

/* ... */

write(fd, some_data_bytes, data_length);

/* ... */

6 / 25

A �le descriptor can then get wrapped up, together with some buffering for performance, into a

FILE object in libc . at can then get wrapped up into a C++

std::fstream , which might be used to implement a Java

java.io.FileWriter.

File I/O system calls

From a process' perspective:

system calls are C functions

files are named by small integer indices (e.g., FD 3)

each process has its own array of files

... and that's enough detail for now

7 / 25

ere's a lot more detail to be dug into about �le descriptors (e.g., how libc communicates with

the OS kernel), and we'll go into that detail in ECE 8400 / ENGI 9875. In fact, our �rst lab in

that course will have you invoking system calls via nothing but native instructions in assembly

code! For now, however, this is all that we need to know in order to start talking about host

security.

Processes

Processes have memory — virtual memory

Processes execute — threads

Processes have (indirect) access to resources — files

Processes execute on behalf of... ???

8 / 25

Users

Usernames

User IDs

User authentication

User authorization

9 / 25

What's a user? A human being, sure, but how does the computer see a user? How do we think of

users?

We often think of users as being identi�ed by usernames : short, human-readable names

that are unique to a speci�c host . If I'm using a computer, I can see my current

username by running whoami(1).

Something a bit more meaningful to the computer, however, is not a username but a

user ID . User IDs are still short and unique to a host , but instead of strings,

they're integers . You can see information about your user ID (and group IDs!) by

running id(1) (or just whoami on Windows).

How does the computer know that the person sitting in front of it is actually the person they claim

to be? at's called user authentication, and we'll get into it when we start talking about passwords

(and their problems, and alternatives).

Next time, we'll start getting into user authorization: saying who is allowed to do

what to what .

User databases

Where is user information stored?

Active Directory

Binary databases (e.g., Berkeley DB caches)

NIS[plus] (though not really any more)

OpenLDAP

Text files (e.g., /etc/passwd)

10 / 25

We'll examine user details speci�c to discretionary access control next time, but for now we will

look at the contents of �les like /etc/nsswitch.conf. is Name Service Switch con�g �le

tells a Unix machine where to �nd information about lots of kinds of names: users, groups,

protocols, shells, etc. It can point us at files, at binary db �les (typically used as a cache), at

ldap (which might actually be Active Direcftory) or at the basically-defunct nisplus.

User database: files
$FreeBSD$
#
root:*:0:0:Charlie &:/root:/bin/sh
toor:*:0:0:Bourne-again Superuser:/root:
daemon:*:1:1:Owner of many system processes:/root:/usr/sbin/nologin
operator:*:2:5:System &:/:/usr/sbin/nologin
bin:*:3:7:Binaries Commands and Source:/:/usr/sbin/nologin
tty:*:4:65533:Tty Sandbox:/:/usr/sbin/nologin
kmem:*:5:65533:KMem Sandbox:/:/usr/sbin/nologin
games:*:7:13:Games pseudo-user:/:/usr/sbin/nologin
news:*:8:8:News Subsystem:/:/usr/sbin/nologin
man:*:9:9:Mister Man Pages:/usr/share/man:/usr/sbin/nologin
sshd:*:22:22:Secure Shell Daemon:/var/empty:/usr/sbin/nologin
...

11 / 25

We can examine local user details via:

cat /etc/passwd

If we look at /etc/passwd on a local Unix-like machine, we should see users like the user who

set up the box. On a LabNet machine, however, something is missing ...

User database: LDAP

Lightweight Directory Access Protocol

Queries directory servers:

Active Directory

ApacheDS

FreeIPA / 389 directory server

OpenLDAP

12 / 25

In practice, Microsoft Active Directory is absolutely dominant, as most large networks support

large numbers of Windows PCs.

In a LabNet environment, we can query lots of interesting details from LDAP using commands

like:

ldapsearch -H ldaps://dogbert.cs.mun.ca "(uid=p15jra)"

Next

DAC (today)

MAC (Thursday)

Capabilities (later)

13 / 25

ere are lots of "AC"s that get tossed around these days (DAC, MAC, ABAC, RBAC, etc.), but

we'll concentrate on three fundamental forms of authorization:

discretionary access control (DAC)

mandatory access control (MAC)

capabilities

Other schemes can often typically implemented in terms of the above. For example, role-based

access control (RBAC) can be implemented using MAC primitives.

DAC

Discretionary access control

Organizing principle:
Files and directories have owners who have the discretion to say who
gets to access them.

Major implementations:
Unix permissions
Access control lists (ACLs)

14 / 25

We saw an example of Unix permissions in Lab 0, when we had to use the chmod command to

make the binary executable game, well, executable!

Unix DAC

Users:

User-readable names, user IDs in /etc/passwd*
... or elsewhere

Groups:

Numeric group ID with names in /etc/group
Users can be members of multiple groups

This file doesn't contain what you might think it does... stay tuned for password hashing in later lectures!
15 / 25

We often think of users as being identi�ed by usernames : short, human-readable names

that are unique to a speci�c host . If I'm using a computer, I can see my current

username by running whoami(1). Something a bit more meaningful to the computer, however,

is not a username but a user ID . User IDs are still short and unique to a

host , but instead of strings, they're integers . You can see information about your

user ID (and group IDs!) by running id(1) (or just whoami on Windows).

Most Unix-like computers have a Name Service Switch con�guration �le in

/etc/nsswitch.conf that tells the host where to �nd names for users, groups, networks,

hosts, RPCs...

In addition to a user ID, every user can be a member of multiple groups that are identi�ed by

integer group ID.

Unix file permissions
Each file has read, write and execute permission for each of owner,
group and other users:

[jon website]$ ls
drwxr-xr-x 4 jon jon 8B Mar 26 2017 assets
-rw-r--r-- 1 jon jon 948B Jan 26 15:37 config.yaml
drwxr-xr-x 8 jon jon 10B Feb 13 23:19 content
-rwxr-xr-x 1 jon jon 271B Jan 13 2017 deploy
drwxr-xr-x 7 jon jon 9B Jan 22 23:14 layouts
drwxr-xr-x 12 jon jon 13B Jan 24 16:18 static

File owner can set permissions with chmod command

16 / 25

ese permissions sound very much like virtual memory permissions, and they do indeed have the

same meanings. However, their enforcement is very different!

Unix permissions
For each of (owner, group, anyone):

Value Meaning

4 Readable

2 Writable

1 Executable

Octal example: 0644 (writable by owner, readable by anyone).

$ chmod 644 file.txt
$ chmod g+rx game

17 / 25

ese power-of-two values can be XOR'ed together.

is is one of the very few instances of an octal representation that you're likely to see anywhere!

Changing file owner
Owner has discretion to set file access permissions... but how do we
set the owner?

Answer: chown(1)

But:

$ chown alice foo.txt
chown: foo.txt: Operation not permitted

18 / 25

Show man page for chown(2)

Superuser

a.k.a., root user

UID 0

can change file owner, chmod other users' files

second-level objective for many attacks

19 / 25

e root user is allowed to violate the DAC policy, overriding the access control decisions made

by a �le's owner (and even changing its owner !). To "get root" is to gain administrative

control over a computer, whether legitimately becoming a system administrator ("yeah, I've got

root on that box") or otherwise.

Many, many attacks against systems start by gaining remote code execution (running

whatever the attacker wants within a process, with that process' credentials) and then a

privilege escalation attack against a service that allows the attacker to escalate

to administrative access.

Root-only programs
lots of tools require root privilege:

filesystem management

package managers

service management

o�en via sudo(8)

Exercise: Consider how a user who can control all so�ware installation
on a computer could violate another user's security policy

21 / 25

We don't want just any user being able to, e.g., control a mounted �lesystem or install a package.

Why not?

For all of these examples, being in control of such a subsystem would allow a user to be able to

violate security policy .

Root-only programs
some programs require root privilege

some programs must be runnable by anyone

some are both!

e.g., ping(8), even intel_backlight(1)!

$ ls -l `which intel_backlight`
-r-sr-xr-x 1 root wheel 16K Feb 26 17:03 /usr/local/bin/intel_bac

22 / 25

Since we don't want just anybody controlling critical subsystems, some programs require root

privilege in order to do their work. For example, I can list installed packages on my

machine from an ordinary user account, but I can only install packages to system

locations (e.g., /usr/local/bin) as root.

Some programs, however, require privilege to do their job and also need to be run by ordinary

users! We can implement such functionality, overriding the normal DAC policy, using setuid

and setgid software.

setuid/setgid programs
setuid: set e�ective UID to file owner's UID on run
setgid: set e�ective GID to file group's GID on run

Can query real or e�ective UID/GID:

#include <unistd.h>

uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);

23 / 25

Example: getuid.c

http://localhost:7420/lecture/7/getuid.c

Summary

Processes and Users

Authorization

DAC (today)

MAC (Thursday)

Capabilities (later)
24 / 25

