
Last time

Processes and Users

DAC

Today

MAC

2 / 25

DAC

Discretionary access control

Organizing principle:

Files and directories have owners who have the discretion to say who
gets to access them.

Major implementations:

Unix permissions
Access control lists (ACLs) 3 / 25

This image shows a Windows dialog for editing an access control list (ACL). In this scheme, an

owner can write more complex security policies than the cross product of (owner, group, others) ×

(read, write, execute). Instead, the owner can specify a list of arbitrary size, granting or denying

permission for any user, group or combination thereof to perform operations on an OS object like

a file. ACLs are a very flexible mechanism for representing permissions, but the downside of giving

people a lot of flexibility is that they might use it! It's easy to create an ACL so complex that you

don't understand it. ACLs are necessary in some circumstances — e.g., centralized file servers that

are accessed by thousands of employees from different departments. For a lot of circumstances,

however, simple is better.

Recall: Superuser

a.k.a., root user

UID 0

can change file owner, chmod other users' files

second-level objective for many attacks

4 / 25

The root user is allowed to violate the DAC policy, overriding the access control decisions made

by a file's owner (and even changing its owner !). To "get root" is to gain administrative

control over a computer, whether legitimately becoming a system administrator ("yeah, I've got

root on that box") or otherwise.

Many, many attacks against systems start by gaining remote code execution (running

whatever the attacker wants within a process, with that process' credentials) and then a

privilege escalation attack against a service that allows the attacker to escalate

to administrative access.

Root-only programs
lots of tools require root privilege:

filesystem management

package managers

service management

often via sudo(8)

Exercise: Consider how a user who can control all software installation
on a computer could violate another user's security policy

5 / 25

We don't want just any user being able to, e.g., control a mounted filesystem or install a package.

Why not?

For all of these examples, being in control of such a subsystem would allow a user to be able to

violate security policy .

Root-only programs
some programs require root privilege

some programs must be runnable by anyone

some are both!

e.g., ping(8), even intel_backlight(1)!

$ ls -l `which intel_backlight`
-r-sr-xr-x 1 root wheel 16K Feb 26 17:03 /usr/local/bin/intel_bac

6 / 25

Since we don't want just anybody controlling critical subsystems, some programs require root

privilege in order to do their work. For example, I can list installed packages on my

machine from an ordinary user account, but I can only install packages to system

locations (e.g., /usr/local/bin) as root.

Some programs, however, require privilege to do their job and also need to be run by ordinary

users! We can implement such functionality, overriding the normal DAC policy, using setuid

and setgid software.

setuid/setgid programs
setuid: set effective UID to file owner's UID on run
setgid: set effective GID to file group's GID on run

Can query real or effective UID/GID:

#include <unistd.h>

uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);

7 / 25

Example: getuid.c

http://localhost:7420/lecture/8/getuid.c

DAC

Organizing principle:

Files and directories have owners who have the discretion to say who
gets to access them.

Major implementations:

Unix permissions
Access control lists (ACLs)

8 / 25

So... how about that other implementation, ACLs?

ACLs: access control lists
(the other way of doing discretionary access control)

explicit list of users, groups

independent permissions for each

useful for complex authorization on multi-
user shared systems* implemented in
NFSv4, POSIX 1e, Windows/SMB...

9 / 25

ACLs are useful, but it's also very easy to write an ACL that you yourself don't understand! Just

look at some of the literature around trying to make ACLs understandable by users:

Intentional access management: making access control usable for end-users Cao and Iverson,

SOUPS '06: Proceedings of the second symposium on Usable privacy and security, July 2006. DOI:

https://doi.org/10.1145/1143120.1143124

Relating declarative semantics and usability in access control Krishnan, Tripunitara, Chik and

Bergstrom, SOUPS '12: Proceedings of the Eighth Symposium on Usable Privacy and Security, July

2012. DOI: https://doi.org/10.1145/2335356.2335375

The poor usability of OpenLDAP Access Control Lists, Chen, Punchhi and Tripunitara, IET

Information Security 17(1), January 2023. DOI: https://doi.org/10.1049/ise2.12079

If people can publish "how to make ACLs usable" over three decades... maybe there's a problem

with ACLs.

https://doi.org/10.1145/1143120.1143124
https://doi.org/10.1145/2335356.2335375
https://doi.org/10.1049/ise2.12079

MAC: mandatory access control

Organizing principle:

System administrators can impose access control policies that file
owners cannot control or circumvent.

If users can't be trusted... which happens a lot!

10 / 25

History

Confidentiality:

"Very hush-hush"

Need-to-know

Formal classification levels*

Lattices
Source: Paul Krzyzanowsi

* See, e.g., the Government of Canada's Levels of security
† See, e.g., the declassified NSA document Examples of Lattices

12 / 25

As soon as you start to deal in any quantity of confidential information, it becomes important to

describe just how confidential some information is relative to other information. The

phrases "loose lips sink ships" and "it's all very hush-hush" both imply that some information

ought to be confidential, but one implies a general disposition towards confidentiality, whereas the

other implies that something specific and special requires particular care.

Loose definitions of confidentiality can be described with informal but still well-understood

terminology such as "need to know". This approach to maintaining confidentiality is useful, but

the human judgement involved is still insufficient for making automated decisions about who

should be able to access information.

Large, complex organizations that need to specify clear rules for accessing information —

traditionally, the military and intelligence services — have created formal classification levels that

allow rules to be applied very clearly and definitively, with little judgment required: "is this person

cleared to view information with this classification marking?"

Lattices make things even more complex, as they add an orthogonal system of code

words.

https://people.cs.rutgers.edu/~pxk/419/notes/access.html
https://www.tpsgc-pwgsc.gc.ca/esc-src/protection-safeguarding/niveaux-levels-eng.html
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-quarterly/Examples_of_Lattices.pdf

The Anderson Report*†

Trusted computing base

Reference monitor

Policy vs mechanism

So what policies should be enforced?

* No relation!
† Anderson, "Computer Security Technology Planning Study", Tech. Rep. ESD-TR-73-51, Vol. II, US Air Force, 1972.

15 / 25

The Anderson report introduced several key terms and concepts that we rely on today. We've

already talked about TCBs, but Anderson also introduced the concept of a reference monitor: a

system that can monitor all accesses to information and make decisions

about them. This allows policy to be encoded separately from mechanism : a

system provides a "how": how some policy should be enforced , and system

administrators can supply the "what": what policy should be enforced .

https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/ande72.pdf

Multi-level security (MLS)

One computer

Many labels

Who can do what to what? It depends!

Who can be trusted to specify access control policy?

MAC answer: System administrators can impose access control
policies that file owners cannot control or circumvent.

16 / 25

Bell–LaPadula

No read up (confidentiality)

No write down (the *-property)

Administrative burden and high-water marks

Reference: Bell and LaPadula, "Secure Computer Systems: Mathematical Foundations", The Mitre Corporation,
AD-770 768, 1973.

17 / 25

It's a lot of work to label every object in a system. One way to cope with this tsunami of labeling is

to allow objects to "float" to the highest label that has written data into them (the "high-water

mark"). If a Secret process writes into a Confidential file, instead of disallowing the write, the file

can be relabeled as Secret. Thus, any Confidential processes will lose access to the file.

Biba

Confidentiality not our only goal!

Reads and writes

LOMAC

Windows

Reference: Biba, "Integrity Considerations for Secure Computer Systems", The Mitre Corporation, MTR-3153,
1975.

18 / 25

Security isn't just about confidentiality. In some cases, integrity of data is more

important than its confidentiality. In almost all cases integrity of the TCB is a necessary

prerequisite to providing any security properties!

We see this used extensively in contemporary operating systems: a process can read from a higher-

integrity object (e.g., a file), but not write to them.

LOMAC refers to low-water mark MAC. This is the logical dual of the high-water

mark of confidentiality. Mandatory Access Control code that was originally developed for

organizations that care about confidentiality can now be used to label objects as "downloaded via a

browser", and thus lower-integrity than other files.

Modern version of Windows have four integrity levels: low, medium, high and system. Even if a

program is running on behalf of the Administrator, it can't overwrite critical OS files that are

labeled with System integrity unless it is itself a System-integrity process (e.g., Windows Update).

https://ban.ai/multics/doc/a039324.pdf

[Domain and] Type Enforcement

Categories for subjects and objects

DTE and DTEL

FLASK

SELinux and AppArmor

Badger, Sterne, Sherman, Walker and Haghighat, "A domain and type enforcement UNIX prototype", USENIX
Comput. Syst., vol. 9, no. 1, pp. 47–83, 1996.

21 / 25

Badger et al.'s Domain and Type Enforcement allowed a conventional UNIX machine to be

partitioned into various domains, and to have MAC policies enforced to constrain the flow of

information between them. This included a language for expressing DTE policy (DTEL), and it

led to further work on enhancing the security of UNIX and UNIX-like operating systems:

TrustedBSD, FLASK, SELinux and AppArmor.

https://www.usenix.org/legacy/publications/library/proceedings/security95/full_papers/badger.pdf
http://www.trustedbsd.org/

Linux Security Modules

Patches and problems

"Can you make it a module?"

Comprehensive hooks that call arbitrary modules

Separation of mechanism from policy

Wright et al., "Linux Security Modules: General Security Support for the Linux Kernel", in Proceedings of the 11th
USENIX Security Symposium, 2002.

22 / 25

This separation of mechanism from policy allows lots of different policies to be enforced, from

traditional MAC policies to access control schemes such as Role-Based Access Control and beyond.

https://www.usenix.org/legacy/event/sec02/full_papers/wright/wright.pdf

FreeBSD MAC Framework

Hooks:

#ifdef MAC
 error = mac_vnode_check_chdir(td->td_ucred, vp);
 if (error != 0)
 return (error);
#endif

Phones

23 / 25

Another example of MAC hooks scattered through an operating system is the FreeBSD MAC

Framework, which came out of the TrustedBSD project. Hooks exist to allow a reference monitor

to make an access control decision based on a subject (who wants to make the access),

an object (what's being accessed, in this case a file's vnode — more about that in ECE

8400 / ENGI 9875) and a currently-installed policy (which may actually be a

composition of several policies).

The FreeBSD MAC Framework is most famously used, not for FreeBSD itself, but to provide a

foundation for application sandboxing on iOS and macOS!

http://www.trustedbsd.org/

MAC summary

History

MLS

MAC in practice

Linux Security Modules

FreeBSD MAC Framework

24 / 25

