
Recall: DACRecall: DAC
Organizing principle:Organizing principle:

Files and directories have ownersowners who have
the discretiondiscretion to say who gets to access them.

Major implementations:Major implementations:

Unix permissions
Access control lists (ACLs)

3 / 19

This image shows a Windows dialog for editing an access control list (ACL). In this scheme,
an owner can write more complex security policies than the cross product of (owner, group,
others) × (read, write, execute). Instead, the owner can specify a list of arbitrary size, granting
or denying permission for any user, group or combination thereof to perform operations on an
OS object like a file. ACLs are a very flexible mechanism for representing permissions, but the
downside of giving people a lot of flexibility is that they might use it! It's easy to create an
ACL so complex that you don't understand it. ACLs are necessary in some circumstances
— e.g., centralized file servers that are accessed by thousands of employees from different
departments. For a lot of circumstances, however, simple is better.

MAC: mandatory access controlMAC: mandatory access control
Organizing principle:Organizing principle:

System administrators can impose access control policies that file
owners cannot control or circumventcannot control or circumvent.

If users can't be trusted... which happens a lot!If users can't be trusted... which happens a lot!

4 / 19

HistoryHistory
Confidentiality:Confidentiality:

"Very hush-hush""Very hush-hush"

Need-to-knowNeed-to-know

Formal classification levels*Formal classification levels*

LatticesLattices Source: Paul Krzyzanowsi

* See, e.g., the Government of Canada's Levels of security
† See, e.g., the declassified NSA document Examples of Lattices

6 / 19

As soon as you start to deal in any quantity of confidential information, it becomes important to
describe just how confidential some information is relative to other information. The
phrases "loose lips sink ships" and "it's all very hush-hush" both imply that some information
ought to be confidential, but one implies a general disposition towards confidentiality, whereas
the other implies that something specific and special requires particular care.

Loose definitions of confidentiality can be described with informal but still well-understood
terminology such as "need to know". This approach to maintaining confidentiality is useful, but
the human judgement involved is still insufficient for making automated decisions about who
should be able to access information.

Large, complex organizations that need to specify clear rules for accessing information —
traditionally, the military and intelligence services — have created formal classification levels
that allow rules to be applied very clearly and definitively, with little judgment required: "is
this person cleared to view information with this classification marking?"

Lattices make things even more complex, as they add an orthogonal system of code
words.

https://people.cs.rutgers.edu/~pxk/419/notes/access.html
https://www.tpsgc-pwgsc.gc.ca/esc-src/protection-safeguarding/niveaux-levels-eng.html
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-quarterly/Examples_of_Lattices.pdf

The Anderson Report*The Anderson Report*††
Trusted computing baseTrusted computing base

Reference monitorReference monitor

Policy vs mechanismPolicy vs mechanism

So what policies should be enforced?So what policies should be enforced?

* No relation!
† Anderson, "Computer Security Technology Planning Study", Tech. Rep. ESD-TR-73-51, Vol. II, US Air Force, 1972.

9 / 19

The Anderson report introduced several key terms and concepts that we rely on today. We've
already talked about TCBs, but Anderson also introduced the concept of a reference monitor: a
system that can monitor all accesses to information and make decisions
about them. This allows policy to be encoded separately from mechanism :
a system provides a "how": how some policy should be enforced , and system
administrators can supply the "what": what policy should be enforced .

https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/ande72.pdf

Multi-level security (MLS)Multi-level security (MLS)
One computerOne computer

Many labelsMany labels

Who can do what to what? Who can do what to what? It depends!It depends!

Who can be trusted to specify access control policy?Who can be trusted to specify access control policy?

MAC answer: System administratorsSystem administrators can impose access control
policies that file owners cannot control or circumvent.

10 / 19

Bell–LaPadulaBell–LaPadula
No read up (confidentiality)No read up (confidentiality)

No write down (the No write down (the *-property*-property))

Administrative burden and high-water marksAdministrative burden and high-water marks

Reference: Bell and LaPadula, "Secure Computer Systems: Mathematical Foundations", The Mitre Corporation,
AD-770 768, 1973.

11 / 19

It's a lot of work to label every object in a system. One way to cope with this tsunami of
labeling is to allow objects to "float" to the highest label that has written data into them (the
"high-water mark"). If a Secret process writes into a Confidential file, instead of disallowing
the write, the file can be relabeled as Secret. Thus, any Confidential processes will lose access
to the file.

BibaBiba
Confidentiality not our only goal!Confidentiality not our only goal!

Reads and writesReads and writes

LOMACLOMAC

WindowsWindows

Reference: Biba, "Integrity Considerations for Secure Computer Systems", The Mitre Corporation, MTR-3153,
1975.

12 / 19

Security isn't just about confidentiality. In some cases, integrity of data is more
important than its confidentiality. In almost all cases integrity of the TCB is a
necessary prerequisite to providing any security properties!

We see this used extensively in contemporary operating systems: a process can read from a
higher-integrity object (e.g., a file), but not write to them.

LOMAC refers to low-water mark MAC. This is the logical dual of the high-
water mark of confidentiality. Mandatory Access Control code that was originally
developed for organizations that care about confidentiality can now be used to label objects as
"downloaded via a browser", and thus lower-integrity than other files.

Modern version of Windows have four integrity levels: low, medium, high and system. Even if
a program is running on behalf of the Administrator, it can't overwrite critical OS files that are
labeled with System integrity unless it is itself a System-integrity process (e.g., Windows
Update).

https://ban.ai/multics/doc/a039324.pdf

[Domain and] Type Enforcement[Domain and] Type Enforcement
Categories for subjects and objectsCategories for subjects and objects

DTE and DTELDTE and DTEL

FLASKFLASK

SELinux and AppArmorSELinux and AppArmor

Badger, Sterne, Sherman, Walker and Haghighat, "A domain and type enforcement UNIX prototype", USENIX
Comput. Syst., vol. 9, no. 1, pp. 47–83, 1996.

15 / 19

Badger et al.'s Domain and Type Enforcement allowed a conventional UNIX machine to be
partitioned into various domains, and to have MAC policies enforced to constrain the flow of
information between them. This included a language for expressing DTE policy (DTEL), and it
led to further work on enhancing the security of UNIX and UNIX-like operating systems:
TrustedBSD, FLASK, SELinux and AppArmor.

https://www.usenix.org/legacy/publications/library/proceedings/security95/full_papers/badger.pdf
http://www.trustedbsd.org/

Linux Security ModulesLinux Security Modules
Patches and problemsPatches and problems

"Can you make it a module?""Can you make it a module?"

Comprehensive Comprehensive hookshooks that call arbitrary modules that call arbitrary modules

Separation of Separation of mechanismmechanism from from policypolicy

Wright et al., "Linux Security Modules: General Security Support for the Linux Kernel", in Proceedings of the 11th
USENIX Security Symposium, 2002.

16 / 19

This separation of mechanism from policy allows lots of different policies to be enforced, from
traditional MAC policies to access control schemes such as Role-Based Access Control and
beyond.

https://www.usenix.org/legacy/event/sec02/full_papers/wright/wright.pdf

FreeBSD MAC FrameworkFreeBSD MAC Framework
Hooks:Hooks:

#ifdef MAC
 error = mac_vnode_check_chdir(td->td_ucred, vp);
 if (error != 0)
 return (error);
#endif

PhonesPhones

17 / 19

Another example of MAC hooks scattered through an operating system is the FreeBSD MAC
Framework, which came out of the TrustedBSD project. Hooks exist to allow a reference
monitor to make an access control decision based on a subject (who wants to make
the access), an object (what's being accessed, in this case a file's vnode — more
about that in ECE 8400 / ENGI 9875) and a currently-installed policy (which may
actually be a composition of several policies).

The FreeBSD MAC Framework is most famously used, not for FreeBSD itself, but to provide a
foundation for application sandboxing on iOS and macOS!

http://www.trustedbsd.org/

MAC summaryMAC summary
HistoryHistory

MLSMLS

MAC in practiceMAC in practice

Linux Security Modules

FreeBSD MAC Framework

18 / 19

