
Faculty of Engineering and Applied Science

Lab Handout
ENGI3891

30 Sep, 7 Oct 2015

Lab 1: Compiler workflow

1 Purpose and outcomes

This lab will help you explore what a compiler does. The compiler is the primary tool used by the programmer,
yet so far you may not understand what it really does or how. This lab is designed to illuminate the compiler and
to introduce a simple automated workflow. After completing this lab, you should be able to:

1. understand the differences among source, object and executable files,

2. understand — in broad terms — the process of symbol resolution,

3. compile source files to object or executable files and

4. diagnose common linker errors.

2 Preparation

You need a compiler, preferably g++ as installed on the computers in EN3000/3029, and its associated tools.
These tools can be installed onMac OS X as part of XCode; Windows versions can be obtained throughMinGW
as described in https://www.engr.mun.ca/~anderson/teaching/ENGI3891/reference.

3 Procedure

As a pair of lab partners, follow the instructions given below. Unlike the revision control lab, there is only one
set of instructions and you will only need one computer. Whenever you encounter the text <<output>> in the
instructions, make a note of the program output you see on the console. These outputs should go in your lab
report, along with answers to any questions below.

For this and future labs, you may choose your lab partner. You may choose to remain with your partner from lab
0, but you are not required to.

3.1 Create a workspace

Create a directory for this lab, then fill it with some C++ source files using a text editor (Notepad++ is installed
on the lab computers and is a sensible enough choice):

H:\engi3891 >mkdir lab1

H:\engi3891 >cd lab1

H:\ engi3891\lab1 >

Listing 1: increment.h
namespace engi3891 {

namespace lab1 {

1

https://www.engr.mun.ca/~anderson/teaching/ENGI3891/reference

Engineering 3891: Advanced Programming Lab 1: Compiler workflow

int increment(int &);

}

}

Listing 2: increment.cpp
#include ”increment.h”

int engi3891 ::lab1:: increment(int& x)

{

++x;

return x;

}

Listing 3: decrement.h
namespace engi3891 {

namespace lab1 {

int decrement(int &);

}

}

Listing 4: decrement.cpp
#include ”decrement.h”

int decrement(int& x)

{

--x;

return x;

}

Listing 5: sillyMath.h
namespace engi3891 {

namespace lab1 {

int add(int , unsigned int);

int subtract(int , unsigned int);

}

}

Listing 6: sillyMath.cpp

2

Engineering 3891: Advanced Programming Lab 1: Compiler workflow

#include ”sillyMath.h”

#include ”increment.h”

#include ”decrement.h”

using namespace engi3891;

int engi3891 ::lab1::add(int x, unsigned int y)

{

for (unsigned int i = 0; i < y; i++)

increment(x);

return x;

}

int lab1:: subtract(int x, unsigned int y)

{

for (unsigned int i = 0; i < y; i++)

decrement(x);

return x;

}

Listing 7: main.cpp
#include ”sillyMath.h”

#include <iostream >

using namespace engi3891 ::lab1;

int main(int argc , char *argv [])

{

int x = -7;

unsigned int y = 10;

std::cout << x << ” + ” << y << ” = ” << add(x,y) << ”\n”;

std::cout << x << ” - ” << y << ” = ” << subtract(x,y) << ”\n”;

return 0;

}

3.2 Compile increment.cpp

Previously in this course, we’ve used the compiler to compile all of our sources files at once. Now, we will see
the command for compiling a single source file into an object file. An object file (not to be confused with a C++
object!) is the result of compiling a single source file: it includes the definitions of the functions defined in that
source file, but not the functions defined in other source files (which we need to create a complete program).

We can tell g++ to produce an object file by passing it the -c flag, which means “compile but don’t link”:

H:\ engi3891\lab1 >g++ -c increment.cpp -o increment.o

This produces an object file called increment.o:

H:\ engi3891\lab1 >dir

3

increment.o

Engineering 3891: Advanced Programming Lab 1: Compiler workflow

<<output >>

H:\ engi3891\lab1 >file increment.cpp

<<output >>

H:\ engi3891\lab1 >file increment.o

<<output >>

The file command inspects the contents of a file and tells us what kind of file it thinks we’ve run it against. In
the first case, it sees content that looks like a C program: we’re not using many special C++ keywords like class,
so it can’t tell the difference. In the second case, file tells us that that increment.o is:

1. meant for use with Microsoft Windows,

2. written in the Common Object File Format (COFF),

3. meant for CPUs that understand Intel 80386 instructions1 and

4. an object file.

We can inspect the contents of this file using the nm command:

H:\ engi3891\lab1 >nm increment.o

<<output >>

We will ignore the symbols with types other than T (so, in this case, all but __ZN8engi38914lab19incrementERi).
The remaining element, __ZN8engi38914lab19incrementERi, is the definition of our increment() function. Its
name has been processed using the C++ name mangler into a name that is a valid identifier (symbol names, like
C and C++ identifiers, cannot contain most special characters like colons or ampersands). We can demangle the
name using the c++filt tool or by passing the --demangle parameter to nm:

H:\ engi3891\lab1 >c++filt __ZN8engi38914lab19incrementERi

<<output >>

H:\ engi3891\lab1 >nm increment.o | c++filt

<<output >>

H:\ engi3891\lab1 >nm --demangle increment.o

<<output >>

In the first of these commands, we simply passed the mangled directly to the demangler. In the second case, we
ran the nm command as we did above, passing its output directly to c++filt via the pipe operator.

Either way, nm has told us that the definition of engi3891::lab1::increment(int&) is located at offset 00000000 in
increment.o: it’s the first (and only!) function definition in the object file.

3.3 Compile decrement.cpp

Next, we will compile decrement.cpp into an object file:

H:\ engi3891\lab1 >g++ -c decrement.cpp -o decrement.o

Again, this produces an object file:

H:\ engi3891\lab1 >dir

<<output >>

1 The Intel 80386, or just “386”, is the basis for almost all modern desktop and laptop computers. Although later CPU generations
introduced many new features, the core 386 instructions are still used today.

4

Engineering 3891: Advanced Programming Lab 1: Compiler workflow

H:\ engi3891\lab1 >file decrement.cpp

<<output >>

H:\ engi3891\lab1 >file decrement.o

<<output >>

Next, run nm against decrement.o and pipe the output through c++filt, capturing the output.

H:\ engi3891\lab1 ><<command >>

<<output >>

Question: What is the offset of decrement(int&) in the object file?

Question: What is different about nm’s description of decrement.o, as compared with increment.o?

Question: Is there any disagreement between the declaration (in decrement.h) and definition of decrement()?

We will come back to this mismatch when we try to link the whole program together into an executable file.

3.4 Compile sillyMath.cpp

Compile sillyMath.cpp into an object file.

H:\ engi3891\lab1 ><<command >>

Show the offsets of the functions defined in sillyMath.o.

H:\ engi3891\lab1 ><<command >>

<<output >>

Question: What are the offsets of the definitions of the functions engi3891::lab1::add(int, unsigned int) and
engi3891::lab1::subtract(int, unsigned int) within sillyMath.o?

We will now use the objdump tool to inspect the actual machine instructions that the compiler has translated our
source code into:

H:\ engi3891\lab1 >objdump --source sillyMath.o

<<output >>

The computer engineers in the class will learn more about what those instructions mean in ENGI 4862. For
now, note the meaning of the offset that nm told us about: it’s the location of our function (more precisely, the
instructions that the compiler has translated our function into) within the object file’s code section.

Question: What is the instruction at offset 1a? (note: you are not required to interpret this instruction)

The output from nm included two symbols with no offset:

U engi3891 ::lab1:: decrement(int&)

U engi3891 ::lab1:: increment(int&)

5

Engineering 3891: Advanced Programming Lab 1: Compiler workflow

Recall that a symbol of type T is one that is defined in the object file2. In these lines, the Umeans that the symbols
are undefined.

Question: Consulting sillyMath.cpp, why would these two symbols be undefined in the object file sillyMath.o?

3.5 Compile main.cpp

Compile main.cpp and show the offsets of its symbols:

H:\ engi3891\lab1 ><<command >>

H:\ engi3891\lab1 ><<command >>

<<output >>

Question: What symbol is defined in the text segment of main.cpp?

You may have noticed that the main symbol has not been mangled like the others: it’s not called __Z5mainiPPc

or main(int,char*[]). This is because main is a holdover from the days of C, and name mangling was only
introduced in C++ to support overloading (a feature that we will learn about soon in lectures).

3.6 Link complete program

We will now use the compiler to attempt to link our object files together into a complete program:

H:\ engi3891\lab1 >g++ decrement.o increment.o main.o sillyMath.o -o example

<<output >>

Question: Why do we encounter this error?

Question: How can we fix it?

Apply the fix that you suggest, recompile any source files you change, then link the complete program:

H:\ engi3891\lab1 >g++ *.o -o example

This time, rather than listing all of our object files, we used *.o to mean “every file whose name ends in .o”. The
result is an executable program that we can run:

H:\ engi3891\lab1 >dir

<<output >>

H:\ engi3891\lab1 >file example.exe

<<output >>

H:\ engi3891\lab1 >example

<<output >>

We can also examine the symbols defined in the executable program, sending the output of nm into c++filt and
the output of c++filt into grep (a program that lets us pick out certain lines of output, in this case the lines that
contain the string “engi3891”):

H:\ engi3891\lab1 >nm example.exe | c++filt | grep engi3891

<<output >>

2 The letter T is used because function definitions are kept in the “text segment” of the object file (and the final program). The segment
containing all of the code is called the “text” segment for historical reasons, but it is frequently referred to as the more-intuitive “code segment”.

6

Engineering 3891: Advanced Programming Lab 1: Compiler workflow

We can also look for all defined symbols:

H:\ engi3891\lab1 >nm example.exe | c++filt | grep ” T ”

<<output >>

This is a very long list! When we link a modern C++ application, the linker links in relevant parts of the standard
library (e.g., the definitions of std::iostream and std::string).

4 Postamble

You should now understand the differences among source, object and executable files and roughly understand
the process by which one is turned into another. You should also understand a bit more of the process of linking
object files together, particularly whan an “unresolved symbol” error means and how you can fix it.

Lab reports are due one week after the lab, at the beginning of that day’s lecture. Unlike the last lab, you will
submit this week’s lab in one partner’s assignments directory on the Subversion repository: you have no further
need of the engi3891/lab0/groupXX directories. Since there will only be one copy per lab group, please ensure
that you have the following line at the very top of your report:

Lab report 1: <<username >> (<<student id >>) and <<username >> (<<student id >>)

7

	Purpose and outcomes
	Preparation
	Procedure
	Create a workspace
	Compile increment.cpp
	Compile decrement.cpp
	Compile sillyMath.cpp
	Compile main.cpp
	Link complete program

	Postamble

